Predicting virologically-confirmed influenza using school absences during the 2007-2015 seasons in Allegheny County, PA
Talia M. Quandelacy ${ }^{1}$, Shanta Zimmer², Chuck Vukotich², Rachael Bieltz², Kyra Grantz³, David Galloway², Justin Lessler¹, Yenlik Zheteyevat, Hongjiang Gao ${ }^{4}$, Amra Uzicanin ${ }^{4}$, Derek A.T. Cummings ${ }^{1,3}$

1. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 3. Department of Bisology and Emerging pathogesis Institute, Universitit of Florida, Gainesville, FL
2. Division of Clobal Migration and Quarantine, Centers for Disease Control and Prevention, Atanta, GA

BACKGROUND

School-based surveillance has been considered for real-time flu monitoring, as 5-17 year olds play an important role in community-level transmission.
We studied if all-cause and cause-specific school absences improved
predictions of virologically-confirmed influenza in the community.

FIGURE 1. ALL-CAUSE ABSENCES, ILI-SPECIFIC ABSENCES \& REPORTED FIGURE 1. ALL-CAUSE ABSENCES, ILI-SPECIFIC ABSENCES \&
CONFIRMED FLUE CASES OVER FIVE INFLUENZA SEASONS

DATA \& METHODS

- Virologically-confirmed flu cases (all ages) collected from all county emergency departments \& outpatient providers (2007 and 2010-2016) provided by Allegheny County Department of Health
Reported all-cause school absence rates from 9 Allegheny County school districts for 2010-2015
Six school districts provided influenza-like illness (ILI)-specific absences collected using a standard protoco

10 K - 5 schools in 1 school district (2007-2008)
$9 \mathrm{~K}-12$ schools in 2 school districts (2012-2013)

- $9 \mathrm{~K}-12$ schools from 3 school districts (2015-2016)

We used negative binomial regressions to predict weekly county-level flu cases in Allegheny County, Pennsylvania during the 2010-2015 seasons. Candidate model covariates:

All-cause school absence rates of different weekly (1-3) lags \& administrative levels (county, school type, \& grade) (assessed separately)
Week and month of the year (assessed separately)
Average weekly temperature \& relative humidity (assessed separately) Separately, for 3 districts for which ILI-specific and all-cause absences were available, we predicted weekly county-level influenza cases using all-cause and ILI -specific absences with all previously stated covariates. We used several cross-validation approaches to assess models including leave 20% of weeks out, leave 20% of schools out, and leave 52 -weeks

RESULTS

Overall, in Allegheny county, there were:
2,184,220 reported all-cause absences from 9 school districts (2010-2015)
19,577 reported all-cause and 3,012 ILI -related absences from 3 school districts (2007, 2012 and 2015)
11,946 reported virologically-confirmed influenza cases (2007, 2010-2015) Including 1 -wk lagged absence rates in multivariate models improved model fits \& predictions of influenza cases over models using week of year and weekly average temperature ($\triangle \mathrm{AIC}=-4$)
All-cause absences from lower grades explained data best
Kindergarten absences explained 22.1% of model deviance compared to 0.43% using nces in validation.
Multivariate models of week-lagged kindergarten absences, week of year, \& weekly average temperature had the best fits over other grade-specific multivariate models ($\triangle \mathrm{AIC}=-6$ comparing K to 12 th grade)
ILI-specific absences perform marginally better than total absences in two years, adjusting for other covariates, but markedly worse in one year. However these results were based on a small number of observations.
Increased length of absence from school also improved predictions

FIGURE 2. OBSERVED \& PREDICTED CASES USING WEEKLY COUNTY ALLCAUSE ABSENCES

FIGURE 3. GRADE-SPECIFIC MODEL DEVIANCE AND PREDICTIONS USING KINDERGARTEN ABSENCES

FIGURE 4. OBSERVED \& PREDICTED FLU USING ALL-CAUSE VS IL SPECIFIC ABSENCES

Table 3. All-cause and cause-specific model performance using three school-based cohort data for three influenza seasons

Influenza Season	Cohort	Absence-type model	R^{2}
2007-2008	PIPP	All-cause absence	44.3\%
		ILI-specific absence	49.0\%
2012-2013	SMART ${ }^{1}$	All-cause absence	99.9\%
		ILI-specific absence	99.9\%
2015-2016	SMART ${ }^{2}$	All-cause absence	99.0\%
		ILI-specific absence	84.0\%
Pooled analysis	PIPP, SMART ${ }^{1}$, SMART 2	All-cause absence	35.0\%
		ILI-specific absence	31.0\%

CONCLUSIONS

- Our findings suggest models including younger student absences improve predictions
of virologically-confirmed influenza. of virologically-confirmed influenza.
We found ILL-specific absences performed similarly to all-cause absences, but more observations are needed to assess the relative performances of these two datasets.

Acknowledgements
This study s supported under the cDC grant 1 U01 CK000337-01

