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Abstract
Students attending schools play an important role in the transmission of influenza. In this

study, we present a social network analysis of contacts among 1,828 students in eight dif-

ferent schools in urban and suburban areas in and near Pittsburgh, Pennsylvania, United

States of America, including elementary, elementary-middle, middle, and high schools. We

collected social contact information of students who wore wireless sensor devices that regu-

larly recorded other devices if they are within a distance of 3 meters. We analyzed these

networks to identify patterns of proximal student interactions in different classes and grades,

to describe community structure within the schools, and to assess the impact of the physical

environment of schools on proximal contacts. In the elementary and middle schools, we

observed a high number of intra-grade and intra-classroom contacts and a relatively low

number of inter-grade contacts. However, in high schools, contact networks were well con-

nected and mixed across grades. High modularity of lower grades suggests that assump-

tions of homogeneous mixing in epidemic models may be inappropriate; whereas lower

modularity in high schools suggests that homogenous mixing assumptions may be more

acceptable in these settings. The results suggest that interventions targeting subsets of

classrooms may work better in elementary schools than high schools. Our work presents

quantitative measures of age-specific, school-based contacts that can be used as the basis

for constructing models of the transmission of infections in schools.
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Introduction
Influenza causes great economic damage each year due to lost productivity and associated
medical treatment, as well as indirect costs of preventative measures [1]. The 2009 pandemic
reinforced the idea put forth by Glezen that, “The fires of the epidemic are fed by healthy, sus-
ceptible school children” [2]. While school summer holiday apparently helped reduce influenza
transmission after the initial pandemic wave [3, 4], school reopening dates during the fall of
2009 in the United States coincided with local acceleration of transmission that resulted in a
second pandemic wave [5–8]. Numerous reports document the central role of school-aged chil-
dren in spreading influenza [9, 10]. Children experience higher rates of infection [11], shed
influenza virus for approximately twice as long as adults [12] and are thought to have much
higher rates of contacts than the rest of the population [13, 14].

Mixing patterns among school children likely contribute to increased transmission of influ-
enza as well as other acute respiratory infections [15–17]. Key elements in characterizing the
speed and extent of infectious disease spread [18, 19] are mixing rates and patterns of encoun-
ters among school students during normal school times, and during planned and unplanned
class and school closures [20]. The statistical properties of social interaction, as characterized
by social networks, are crucial in determining patterns of epidemic spread. Knowing the struc-
ture of social contact networks enables us to test and assess the effect of different interventions
that may change the dynamics of epidemics. In this study, we address the limitation of focusing
on only one type or level of school in our understanding of school-based mixing patterns by
collecting and analyzing contact patterns with the same technology and setup at schools of dif-
ferent levels and types including public and charter (publicly-funded) elementary, middle, and
high schools in the United States.

Recent advances in microelectromechanical systems technology (MEMS), wireless commu-
nications, and digital electronics have enabled the development of low-cost, low-power, multi-
functional sensor nodes (also known as sensor motes or, simply, motes) that can measure
proximity between devices over time [21, 22]. Here we report a network analysis of proximal
interactions recorded using motes during the 2012–2013 school year in eight K-12 schools,
which includes kindergarten and the 1st through the 12th grades, in greater area of Pittsburgh,
Pennsylvania.

Methods
The social mixing and respiratory transmission (SMART) project was conducted in eight
schools, including grades K-12 in two school districts, between October 2011 and April 2012.
Schools from two school districts were included: a public school district and a group of charter
schools in Western Pennsylvania (both within the Pittsburgh standard metropolitan statistical
area [SMSA]). The local government funds both public and charter schools and while public
schools are operated by the government charter schools are operated independently by not-
for-profit organizations. Parents were offered the opportunity for their students to opt out of
the study; students could also refuse to participate. Average opt-out proportion was 7% in
schools.

Students in each of the eight schools were assigned a single mote on the deployment day.
Sensor network deployment details are shown in Table 1 including number of motes deployed,
deployment day of the week and class sizes. We worked closely with school officials to select
the mote deployment date, a “typical” day without school testing or school-wide special activi-
ties. We distributed motes to teachers and other staff members as well but these data are not
included in this analysis. About 500 sensor motes were provided in plastic pouches with lan-
yards, and students were instructed to carry them around their necks. Some additional
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stationary sensor motes were deployed throughout the school in classrooms and common
areas to provide time synchronization for all motes and determine the spatial location of con-
tacts. In each mote deployment, 1–2 stationary motes were used in each classroom and 1–5
motes were used for larger rooms such as cafeterias or gyms. The deployment durations varied
slightly according to school schedules. In general, the motes were distributed before the first
class (between 8am-9am) and collected immediately following the last class (between 2:30pm-
3:30pm) on the same day. Over multiple deployments, in total, 1,828 students and 116 teachers
and staff wore motes, and 232 motes were deployed at fixed locations within the schools (sta-
tionary motes). We labeled each school depending on the school district type and level, i.e., a
label X-Y in which X denotes the school district (P for public and C for charter) and Y denotes
the school level (ES for elementary school, EM for elementary-middle school, MS for middle
school, and HS for high school). In each deployment, we covered the entire student population,
except in one of the middle schools (P-MS2) and one of the high schools (P-HS) due to large
student populations. To remedy this, for P-MS2 and P-HS, we randomly selected classrooms
from different grades.

We used TelosB wireless sensor motes manufactured by Memsic Inc. [23] in this study. The
size of a rectangular mote is similar to the size of its battery pack, which holds two AA batteries
(shown in Fig 1). TelosB sensors utilize an IEEE 802.15.4-compliant radio frequency (RF)
transceiver, a 2.4 GHz globally competitive ISM band, and a 1 MB external flash memory for
logging contacts.

The sensor motes were programmed in NesC language [24] to transmit a beacon every 20
seconds and listen for other motes’ beacons. Whenever a mote detected another mote, it
recorded its unique mote ID, the current time, and the radio signal strength indicator (RSSI).
Signal strength provides a measure of proximity of the sensor motes, hence the individuals. An
initial pilot investigation found that the signal strength between two motes dropped to about
-80 db when they are face-to-face and approximately 3 meters away from each other; this dis-
tance can be assumed to be of high relevance to influenza transmission when one considers

Table 1. List of schools along with the numbers of motes used for students, staff members, and rooms.

School Day Total Stat. Staff Students K 1 2 3 4 5 6 7 8 9 10 11 12

P-ES Mon 184 29 14 141 27 31 21 32 30 - - - - - - - -

C-ES Mon 209 21 17 171 30 30 24 14 34 39 - - - - - - -

C-EM1 Mon 296 32 13 251 31 33 16 34 29 35 17 20 36 - - - -

C-EM2 Wed 389 38 24 327 34 35 37 36 40 33 43 37 32 - - - -

P-MS1 Wed 335 22 11 302 - - - - - 152 150 - - - - - -

P-MS2 Wed 211 38 4 169 - - - - - - - 101 68 - - - -

C-HS Mon 190 18 18 154 - - - - - - - - - 74 67 13 -

P-HS Tue 362 34 15 313 - - - - - - - - - 52 87 88 86

Stat.: Number of stationary motes

K: Kindergarten

1–12: Grades 1 through 12

C: Charter school

P: Public school

ES: Elementary school

EM: Elementary-middle school

MS: Middle school

HS: High school

doi:10.1371/journal.pone.0151139.t001
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large droplets from a strong sneeze and enables us to compare our results with the literature
[25, 26]. The proximity metric, as measured by signal strength, depends on many factors,
including line of sight and the presence of obstructions. In this analysis, we measured uninter-
rupted continuous interactions among the students, which we call “encounters”, then we accu-
mulated encounters for the deployment day to obtain “cumulative contact” or just “contact”
and created student contact networks with weights proportional to the total number mutual
recordings. Each recording is assumed to correspond to a continuous 20-second contact
between the students. For example, x recordings between a pair of students denote x/3 minutes
of aggregated contact time between them, not necessarily consecutive, during that day.

Fig 1. TelosB sensor mote used in the study.

doi:10.1371/journal.pone.0151139.g001

Social Contact Networks and Mixing in K-12 Schools in Pittsburgh, PA

PLOSONE | DOI:10.1371/journal.pone.0151139 March 15, 2016 4 / 19



One minor problem with motes we used was the occasional data corruptions in the flash
memories due to technical failures and human interventions such as taking out and putting
back the batteries. We observed this data corruption problem in about 18% of the motes. We
resolved most of the corrupted data issues by reading the memory in the raw format and put-
ting in offsets at places where the corruption started and ended, reducing the data loss to about
5% for these problematic motes.

The study was reviewed and approved by institutional review board (IRB) of the University
of Pittsburgh (IRB# REN15020012 / PRO11120186), and under the US Centers for Disease
Control and Prevention IRB authorization agreement. In addition, the IRBs of the two univer-
sities that collaborated on this study, the Johns Hopkins Bloomberg School of Public Health
and the University of Liverpool, also reviewed and approved the study protocol. The demo-
graphics of the school populations is slightly different from that of the Pittsburgh Standard
Metropolitan Statistical Area (population around 2.6 million): 89.8% Caucasian, 7.7% African-
American, 1.1% Asian, and 0.7% Hispanic [27], whereas the school population is 70.5% Cauca-
sian, 25.8% African-American, and 0.9% Asian, reflecting a more urban population.

Network Analysis
We analyzed network properties, including degree, strength, and, density in order to assess the
overall connectivity of the network, as well as to compare different contact networks to each
other [28–30]. Degree is the number of contacts accumulated during the deployment period by
the students. Strength of a student is the total time he/she spent with his/her contacts during
the deployment. Density is the ratio of the number of contacts present in the network and the
maximum number of contacts possible. We also calculated the clustering coefficient [31]. Clus-
tering coefficient (also known as local density) is a measure of how much the contacts of a stu-
dent have contacts with each other and can mathematically be defined as the ratio of the
number of contacts a student has and the maximum number of connections among these con-
tacts. We used Igraph [32] library for network analysis and Pajek [33] for network visualiza-
tions plotted using a force-based algorithm [34].

In networks where individuals are connected through co-location such as school contact
networks we study here, overlap of contacts of students can be used in assessing the strongly
formed clusters of students in addition to clustering coefficient. We use a definition of overlap
based on common contacts between two students that can be described as the intersection of
contact sets of the students [35], Oij = nij/(ki-1+kj-1-nij), where nij is the number of common
contacts between student i and j, and ki (kj) is the degree of student i (j). The behavior of the
overlap ratio of two students as a function of the weight of the edge between them (the duration
of the contact) is a useful notion to understand the clustering of the students with their short or
long-duration contacts.

In order to measure how well a school contact network can be divided into grades or class-
rooms, we computed modularities for communities defined by either the grades or the class-
rooms and compared their values. A community is a strongly connected set of nodes, i.e.,
individuals tagged by motes that is sparsely linked to the remaining network. If the network is
divided (fragmented) into communities, such that the number and weight of the contacts
between the communities are small and the contacts between the nodes in the same commu-
nity are large in number and weight, then the network has a high modularity for this specific
division. The structure of communities in a network can be considered a medium-level topo-
logical organization as opposed to local and global structures [36]. The technical definition of
modularity [37] is based on the idea that a random network is not expected to have a modular
community structure, so the possible existence of communities is revealed by the comparison
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between the actual density of contacts in a community and the density one would expect to
have in the community if the network nodes were attached regardless of community structure.

Results
Basic network measurements for school contact networks are presented in Table 2, including
number of students (n), density of the network (δ), average degree (number of contacts, d),
average time per contact in minutes or strength (s), and average clustering coefficient (CC).
Some network measurements are very sensitive to high number of short-duration contacts or
cannot use weights, for that reason, we omitted contacts with duration less than 5 minutes for
better description of network measurement statistics and for visualization. In other words, we
assume that two students have a contact if their total interaction time on the deployment day is
greater than 5 minutes. The network densities varied greatly from school to school, with values
ranging from 0.096 for P-MS1 to 0.345 for C-HS. The densest network was C-HS, a small
school in a relatively small space. The other high school (P-HS), however, is a very low-density
(0.114) network with more than 1,500 students. We had to deploy our motes in a subset of ran-
domly selected classrooms, affecting average degree and average contact duration. The format
of the raw mote data and additional information can be found in S1 Text. Also, all the network
files used in this study are available in S1 Data in various network file formats.

Across all schools included in this analysis, we found that students had an average of 26–56
contacts lasting cumulatively 5 minutes or more during a typical school day. The highest aver-
age number of contacts was observed at C-HS (about 56) due to a well-mixed contact network.
Although we had a partial deployment at P-HS, the degree was around 36, greater than all the
elementary schools and one of the elementary-middle schools. In general, the lower-level
schools have low degrees but longer average contact duration, demonstrated by s range in
Table 2. Clustering coefficients varied from 0.41 to 0.82 in these contact networks. The high
value of clustering coefficient in elementary and elementary-middle schools (0.71–0.82) may
be due to similar schedules among students in the same grade.

Encounter and cumulative contact-duration distributions showed similar characteristics at
schools of different levels. The panels in Fig 2 show the distribution (relative frequency) of the
encounter durations (A), time between encounters (B) and number of encounters (C) of the
same pair of students, and cumulative contact durations (D). All these distributions follow a
power law, as observed in other school contact network studies [26, 38]. One can observe from
Fig 2A–2C that the encounters are very dynamic, namely, most of them are short and frequent,
a natural result of long-tailed power-law distributions.

The distribution of cumulative contact durations as seen in Fig 2(D) shows that the propor-
tion of all contacts that are� 1 minute are P-ES (31%), C-ES (47%), C-EM1 (36%), C-EM2
(37%), P-MS1 (47%), P-MS2 (21%), C-HS (27%), and P-HS (52%). The proportions of
contacts� 5 minutes are P-ES (60%), C-ES (72%), C-EM1 (61%), C-EM2 (64%), P-MS1
(64%), P-MS2 (39%), C-HS (60%), and P-HS (71%). Although 5 minutes is an arbitrary dura-
tion, it can be used to separate a weak contact from a strong one [39]. By using a method
described in [40], we fitted a power-law function P(w) ~ wβ to contact duration distributions
(Fig 2D) and found β values ranging from -0.9 to -1.4. This power-law behavior of contact-
duration distributions was observed in other school contact studies [26, 38]. Contact duration
distributions also show some peculiar effects due mostly to school schedule. Short-duration
contacts (1–10 minutes) appear to be distributed in a power-law fashion for only about one
order of magnitude, and medium-duration contacts (10–30 minutes) show bumps in distribu-
tion in both middle schools and P-HS. Short-duration contacts can be considered as occasional
contacts between students from different grades or classrooms during breaks and lunchtime.

Social Contact Networks and Mixing in K-12 Schools in Pittsburgh, PA

PLOSONE | DOI:10.1371/journal.pone.0151139 March 15, 2016 6 / 19



Medium-duration contacts are usually in-class contacts sitting at a distance in the same class-
room. Long-duration contacts (greater than 30 minutes) among students (shown at the tail of
the distribution) are observed relatively less frequently with exponentially decaying probability:
P-ES (16.1%), C-ES (13.5%), C-EM1 (17.6%), C-EM2 (15.9%), P-MS1 (18.6%), P-MS2
(21.2%), C-HS (8.9%), and P-HS (3.4%). Although the distributions of cumulative contact
durations follow a power law, the signal strengths of all encounters are distributed exponen-
tially (results are not shown). One can argue that the exponentially distributed signal strengths
make the choice of threshold relatively arbitrary, not epidemiologically but in terms of the net-
works generated based on these values.

We characterized changes in contacts during each day. We calculated the average degree
(number of contacts) per student in 3-minute intervals on deployment day (Fig 3). In middle
schools and high schools, the average number of contacts is low when students are in their
classrooms and high when students have the chance to contact more schoolmates, such as dur-
ing breaks and lunchtime. The graph in Fig 3A shows the average degree at 3-minute intervals
in two elementary schools and two elementary-middle schools. The starting times are different
because the deployment and/or the schools started at different times. The class breaks were
vaguely visible and the lunchtime overcrowding in the cafeterias was not observable at all,
except for at P-ES. In these elementary and elementary-middle schools, lunchtime is relatively
quiet because each grade eats lunch together with another grade at different time slots from
11am to 1pm, creating less dense contact activity in the cafeterias during lunchtime. P-ES,
however, has a very high average degree during lunchtime compared to class times because of a
physically small cafeteria and lunchtimes and recess that are concentrated between 11:45am
and 12:45pm; higher-level schools, such as middle schools and high schools, are shown in Fig
3B. These schools exhibit very pronounced differences in average degree during class breaks.

Table 2. Contact network measurements and their standard deviations (and standard errors) for school contact networks*.

School n δ d s CC

P-ES 141 0.189 27.6 ± 9.1 (0.9) 38.3 ± 14.8 (1.4) 0.81 ± 0.12 (0.02)

C-ES 171 0.147 25.6 ± 10.3 (0.8) 41.9 ± 10.3 (0.9) 0.82 ± 0.14 (0.01)

C-EM1 251 0.108 29.1 ± 10.1 (0.8) 43.3 ± 15.6 (1.2) 0.76 ± 0.14 (0.02)

C-EM2 327 0.116 38.0 ± 13.3 (0.8) 44.9 ± 18.8 (1.1) 0.76 ± 0.13 (0.01)

P-MS1 302 0.096 30.0 ± 9.5 (0.6) 52.8 ± 20.0 (1.3) 0.72 ± 0.18 (0.01)

P-MS2 169 0.302 52.9 ± 19.3 (1.7) 27.4 ± 6.2 (0.6) 0.71 ± 0.09 (0.01)

C-HS 154 0.345 56.1 ± 15.5 (1.6) 21.7 ± 3.9 (0.5) 0.56 ± 0.06 (0.01)

P-HS 314 0.114 35.9 ± 11.7 (0.6) 17.8 ± 4.4 (0.3) 0.41 ± 0.15 (0.01)

* The contacts with total duration less than 5 minutes are ignored

n: number of students

δ: density of the network

d: average degree (number of contacts)

s: strength (average duration per contact) in minutes

CC: average clustering coefficient

C: Charter school

P: Public school

ES: Elementary school

EM: Elementary-middle school

MS: Middle school

HS: High school

doi:10.1371/journal.pone.0151139.t002
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All of the schools, except one of the middle schools, P-MS1, showed increase in average num-
ber of contacts during class break. Although P-MS1 has no visible differences in number of
contacts during breaks, it has a shorter lunch period and relatively smaller cafeteria, creating a
higher average number of contacts during that time.

Fig 2. Encounter and contact duration distributions. n: relative frequency; C: Charter school; P: Public
school; ES: Elementary school; EM: Elementary-middle school; MS: Middle school; HS: High school.

doi:10.1371/journal.pone.0151139.g002

Fig 3. Average number of contacts (degree) for 3-minute intervals for the duration of the deployment. A) Elementary and elementary-middle
schools B) Middle and high schools.C: Charter school; P: Public school; ES: Elementary school; EM: Elementary-middle school; MS: Middle school; HS:
High school.

doi:10.1371/journal.pone.0151139.g003

Social Contact Networks and Mixing in K-12 Schools in Pittsburgh, PA

PLOSONE | DOI:10.1371/journal.pone.0151139 March 15, 2016 8 / 19



Network visualizations in Fig 4 show the students as nodes and the contacts among them as
lines if the total contact duration is greater than 5 minutes. Students in the same grade were
identified in visibly separated groups in all networks except high schools. In the high schools,
the students are connected to other students in different grades, making it difficult to visually
identify the grades or classrooms.

The heat maps can be used to visually display contact matrices, i.e., inter-grade and intra-
grade mixing patterns in each school. Fig 5 shows the average number of contacts per pair of
students among grades for each school as a heat map. A greater number of proximal contacts
occur among students in the same grade. In elementary and elementary-middle schools, a rela-
tively large number of contacts can occur between some pairs of grades due to common lunch
schedules (e.g., 1st, and 2nd grades in C-ES and P-ES).

In both of the public middle schools we studied, each grade is not only physically separated
but also has a schedule that does not overlap other grades, making most student contacts with
students in the same grade. However, in high schools, due to very diverse student-centered
schedules as opposed to grade-specific schedules in lower-level schools, contacts are distributed
throughout all grades.

We explored the impact of placing thresholds on the duration of proximal contacts required
to define a contact between two individuals on degree distributions of the networks. Degree
distributions of contact networks can be seen in Fig 6. In general, degree distributions are bino-
mial-like and centered on the average degree values (listed in Table 2).

Average overlap ratios as a function of contact duration (link weight) for each school is
shown in Fig 7, grouped as (A) elementary and elementary-middle schools and (B) middle and
high schools. Average overlap ratio is typically low for short-duration contacts, whereas, long-
duration contacts have higher overlap ratio because they are usually among classmates who are
in contact almost the whole day forming strongly connected clique-like sub-networks. In all
schools average overlap ratio slowly increases with contact duration except with some fluctua-
tions for short-duration contacts. We observed the least average overlap ratio in P-HS, the larg-
est school we had to do a partial deployment, and on the other hand the middle schools have
the highest average overlap ratio.

We used modularity scores (shown in Table 3) to measure the community structure of these
networks. As expected, the grade and classroom divisions have relatively high modularity in
elementary and elementary-middle schools (0.54–0.75). In these schools, all students have
fixed schedules (i.e., the same courses in the same time slots in the same classrooms); however,
classroom and grade divisions are not perfect (modularity is not unity) due to occasional con-
tact among students from different grades and classrooms.

The network visualizations (shown in Fig 4) help guide our understanding of modularity
values. In elementary and elementary-middle schools, the grades and classrooms are visually
distinguishable: at the grade level, the middle schools are not as modular as elementary and ele-
mentary-middle schools and at the classroom level, middle schools have very different modu-
larities. P-MS1 have 0.77 (the highest among all modularities we measured) and P-MS2 have
0.09 (the lowest). P-MS1 have a very visible classroom structure for 6th graders, increasing the
modularity; however, the 5th graders form a well-connected single community due to common
activities. At P-MS2, only a portion of the student population has been observed due to the size
of the school: one group among 7th graders and one among 8th graders. These two groups are
clearly visible in Fig 4 as two separate communities connected only by occasional short-dura-
tion contacts; the classrooms were not discernable. The high schools have very low modularity
at both the grade and classroom level. The mixed schedules of students in these schools (i.e.,
students from different grades take the same classes) decreases the modularity based on grades
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Fig 4. School contact network visualizations*. * The darkness of the lines is proportional to contact
durations and the shape and color of the nodes show the grade of the student. The contacts with total
duration less than 5 minutes are not shown. K: Kindergarten; 1–12: Grades 1 through 12; C: Charter school;
P: Public school; ES: Elementary school; EM: Elementary-middle school; MS: Middle school; HS: High
school.

doi:10.1371/journal.pone.0151139.g004

Social Contact Networks and Mixing in K-12 Schools in Pittsburgh, PA

PLOSONE | DOI:10.1371/journal.pone.0151139 March 15, 2016 10 / 19



or classrooms; C-HS has the lowest modularity score based on grade (shown in Fig 4 with
faintly discernable grades).

In order to assess the effect of the short-duration contacts on modularity scores in these
schools, we examined the modularity score against the threshold (shown in Fig 8 with

Fig 5. Contact matrices among the grades for each school*. * Each cell represents number of contacts
between the grades per pair of students. The contacts with total duration less than 5 minutes are ignored.
Each column and row corresponds to a grade and 0 is used for Kindergarten. C: Charter school; P: Public
school; ES: Elementary school; EM: Elementary-middle school; MS: Middle school; HS: High school.

doi:10.1371/journal.pone.0151139.g005
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increments of 10 readings corresponding to 3 minutes and 20 seconds), allowing some insight
into the dynamics of the modularity as we change the threshold. In general, having weak links
decreases modularity; in other words, the modularity increases as we increase the threshold by
deleting the contacts with duration less than the threshold. After reaching a certain threshold,
removing links weakens the modular structure of the network and, thus, causing a slow

Fig 6. Degree distributions of contact networks. (A) Elementary and elementary-middle schools, no
threshold (B) Middle and high schools, no threshold (C) Elementary and elementary-middle schools, 5 min
threshold (D) Middle and high schools, 5 min threshold. k: the number of contacts (degree); Nk: the number of
students with k contacts; C: Charter school; P: Public school; ES: Elementary school; EM: Elementary-middle
school; MS: Middle school; HS: High school.

doi:10.1371/journal.pone.0151139.g006

Fig 7. Average overlap ratio versus contact duration. (A) Elementary and elementary-middle schools (B) Middle and high schools. C: Charter school; P:
Public school; ES: Elementary school; EM: Elementary-middle school; MS: Middle school; HS: High school.

doi:10.1371/journal.pone.0151139.g007
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decrease. This threshold appears to be corresponding to a value that roughly separates intra-
classroom contacts from inter-classroom contacts. Modularity scores for very high thresholds
are not reliable because of an insufficient number of contacts in the network. This generic
behavior is observed in our elementary and elementary-middle schools (shown in Fig 8A);
however, a very peculiar behavior of modularity is seen in higher-level schools. Fig 8B shows
the modularity scores based on grades and classrooms versus threshold for middle and high
schools. Grade-based modularity stayed almost constant against threshold for P-MS1; class-
room-based modularity for the same school have a generic behavior (i.e., first increases then
decreases very slowly). P-MS1’s grade-community structure was already very prominent, so
applying a threshold did not really change the modularity; classroom communities are weakly
connected, so removing them increases the modularity. At P-MS2, the classroom-based modu-
larity stayed constant for a wide range of threshold values but, interestingly, grade-based mod-
ularity decreased with threshold. The reason for this behavior is that the classrooms are not
easily separable from each other (hence, low classroom-based modularity to begin with), and
already separated grade communities weaken as contacts are deleted. The high schools exhib-
ited generic behavior for modularities, with fast increases for low values of threshold and fluc-
tuations afterward due to highly connected grades and classrooms separated from each other
with increasing threshold, as well as removing any remaining long-duration contacts one by
one.

Discussion
This study addresses a number of gaps in our understanding of social mixing patterns of
school-aged children attending U.S. elementary, middle and high schools. Our analysis has
shown that contacts among these age groups differ along multiple dimensions, including the
mean number of proximal contacts during school, the duration of these contacts, and the clus-
tering and modularity of proximity-based contacts. Our results suggest that lower-level
schools, such as elementary and elementary-middle schools, have very typical contact patterns
due to fixed schedules and can be modeled as fully mixed classrooms with weak inter-grade
interactions. The students in middle schools and high schools have relatively free schedules
and are relatively well mixed across grades and classrooms.

Table 3. Modularities of the networks based on grades and classrooms.

School Grade Modularity Classroom Modularity

P-ES 0.68 0.67

C-ES 0.71 0.71

C-EM1 0.73 0.67

C-EM2 0.75 0.54

P-MS1 0.48 0.77

P-MS2 0.35 0.09

C-HS 0.22 0.11

P-HS 0.36 0.32

C: Charter school

P: Public school

ES: Elementary school

EM: Elementary-middle school

MS: Middle school

HS: High school

doi:10.1371/journal.pone.0151139.t003
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The estimates we derived from the contact data, such as the number and diversity of con-
tacts and their durations and locations, could play an important role in determining the extent
and speed of a respiratory infection transmission. In well-mixed networks with typically high
average degree, for example, the transmission can occur more rapidly, resulting in higher attack
rates, assuming a fully susceptible population [41]. Although younger children are at greater
risk of influenza and other acute respiratory infections, weak links between communities (i.e.,
high modularity) within a network, as observed at elementary schools, could limit or slow
infectious disease transmission between these communities, resulting in a lower overall school
attack rate. Lower-level schools function as a set of loosely connected classrooms and grades,
whereas high schools have social contacts that are more mixed by grade, creating a more tightly
connected network across all grades that is not so different than a completely random network
for modeling purposes.

In general, high modularity in social networks implies quasi-isolated groups and in case of
low-vaccination coverage at the group level, they have the potential to create locally accelerated
influenza infections [42]. The fact that the weak links (short-duration contacts) among the stu-
dents in different classrooms or grades and strong links (long-duration contacts) among the
students in the same classroom or grade attest to the observation that weak links may play an
important role in network such as carrying the virus from one group to another (Granovetter’s
“strength of weak ties” theory [43]). Mathematical modeling could help further address these
hypotheses.

Our findings also highlight the role of physical school floor plans and inter-grade activities
on social contact mixing patterns. Cafeteria size and the layout of the hallways connecting
classrooms appear to impact the number and duration of school contacts. These observations
could be helpful in modeling interventions to reduce in-school social mixing and assessing
impact on influenza transmission. On the other hand, public district schools and charter
schools were similar in terms of network measurements. Although these schools are adminis-
tered using different business models and they are also different in size (typically public district
schools are larger and more crowded), their networks are similar not only visually but also in
degree distributions and other connectivity metrics as well as modularity.

The POLYMOD study [13] quantified mixing patterns for eight European countries using
age- and gender-representative samplings of the populations and observed strong assortative

Fig 8. Networkmodularity versus threshold*. (A) Elementary and elementary-middle schools (B) Middle and high schools. * The contacts with total
duration less than threshold are ignored. (G): grade-based modularity; (C): classroom-based modularity; C: Charter school; P: Public school; ES: Elementary
school; EM: Elementary-middle school; MS: Middle school; HS: High school.

doi:10.1371/journal.pone.0151139.g008
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mixing of age groups and particularly high rates of assortative mixing among school-aged chil-
dren. Although the POLYMOD study found relatively few differences in mixing patterns
across these countries, it is unknown if the information generated is appropriate for public
health purposes within the United States, particularly in school-aged children, given the differ-
ences not only in educational institutions but also in urban culture of space usage. In addition,
respondents provided information about a single day only, no higher-level network informa-
tion was collected, and information was gathered from the total range of respondents during a
more than 1-year period. Since our study focused on in-school contacts only, our age-specific
contact matrices were more diagonal than those reported in POLYMOD.

Another study of school-based contacts was carried out in a US high school consisting of
800 students (grades 9–12), teachers, and staff using motes [26]. They found that a social net-
work formed by connecting individuals who were in close contact (3 m), resulted in a very
dense network (about 750,000 close contacts), with a low mean network distance between indi-
viduals and a relatively homogeneous connectivity distribution along with high clustering. In a
subsequent study same as above [44], similar sensor motes were deployed in another high
school (715 students) on three different school days. Similar contact network properties were
observed, including high density and clustering, as well as high modularity. Our study included
a much larger student population across several different types of schools and grades in urban
and suburban settings. In contrast, our study found differences in multiple contact-structure
metrics by school and grade range, including higher modularity, clustering, and mean contact
duration in lower-level schools compared to higher-level grades. In [26], the authors also
found power-law distributed contact and encounter durations as well as another study [45] in
which phones with Bluetooth technology was used instead of sensor motes. In [45], the statisti-
cal fit of contact duration distributions gave a power-law exponent of -1.33, within the range
we found for different schools, -0.9 to -1.4.

An additional study measured face-to-face contact patterns at a distance of 1–1.5 m in a
French primary school (232 students aged 6–12 years for 2 days) [38]. The authors calculated
that the students spent, on average, three times more time in contact with classmates than with
children in other classrooms. In our study, the total contact-duration ratio for students in the
same and different grades exhibits great variation (3%-75%), being higher in high schools and
lower in other schools. In this study, the authors also presented results on the number of con-
tacts as a function of time of the day, in which class and lunch breaks are quite visible with
more students having contacts with each other. Similar phenomena can be observed in our
middle and high school contacts whereas the contacts in elementary and elementary/middle
schools stay fairly constant throughout the day. The only exception to this is one of our ele-
mentary schools in which during lunchtime average number of contacts peaks because all stu-
dents have lunch and recess at the same time. We also observed a hierarchical block-diagonal
structure on the contact matrix similar to the previous study [26]. A third, larger-scale study
measured proximities between individuals at a conference and exhibition using radio fre-
quency identification (RFID) tags worn by participants [46]. Similar technology was used in a
high school in France over multiple days in two consecutive years [47] and researchers found
that intra-class contacts are much stronger than those among classes but the overall network is
still structured with visible classes as communities and the overall structure was robust over dif-
ferent days and years. Our high school contact network is relatively more mixed and it is diffi-
cult to discern grades as communities. The difference in term of schedules in American and
French high schools reveals itself in the structure of contact networks, i.e., the American high
school system is more student-based and there is no homeroom for students.

The choice of a threshold corresponding roughly to 3 meters affects the contact network
properties we generated but in order to be consistent with the literature using the same sensor
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technology [26] we used the same threshold value. Since the distributions of the signal
strengths follow perfect power laws for all schools, choosing a little larger threshold (corre-
sponding to contact distances less that 3 meters) would yield networks with degree distribu-
tions similar to current ones. Further studies using different thresholds could show differences
in the overall structure of the contact networks.

In a more recent work [48] the researchers used not only a sensor network but also contact
diaries and friendship surveys for contact structure and compared them to each other. Their
observations that the contact durations are distributed in a power-law fashion and high num-
ber of contacts is present among the students in the same grade as opposed to weak connec-
tions among different grades are parallel to ours in this study.

Limitations
This analysis is subject to a few limitations. First, to prolong battery life, the sensor motes were
programmed to wake up every 20 seconds to gather information about other motes. We assume
that if two motes have records of each other in two consecutive time ticks, then they have a con-
tinuous contact of 20 seconds. Previous contact network studies suggest that most contacts can
be captured at an adequate temporal resolution with this assumption [26, 49]. Data corruption
we experienced in some motes was resolved by an offsetting procedure that reduced the overall
data loss to about 5% for these motes. Also, we lost data from about 5% of our motes completely
due to misuse by the students as well as some technical problems with the mote chips, creating
some small-scale missing data problems. Overall data loss was estimated to be< 10%.

Conclusions
Our findings describe the social-contact network characteristics of school-aged children
attending elementary, middle, and high schools in Pittsburgh, Pennsylvania. We detected dif-
ferences in our contact measurements by school level, likely important differences in under-
standing influenza transmission among school-aged children in the United States. Further
research should explore the effect of contact networks on the spread of acute respiratory infec-
tious diseases, such as influenza, in school settings. We hypothesize that schools with high
modularity should be able to control the spread of disease by employing social distancing mea-
sures to reduce connectedness between smaller clusters of students, which would be most
applicable to elementary schools. This research may have a significant impact on school
responses to influenza and other acute respiratory infectious diseases, for example, school clo-
sure is often mentioned as a pandemic intervention. This work will contribute to further stud-
ies to measure the effectiveness of school closures, as well as raise consideration of other
strategies, short of full closure, that may be effective.
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