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This FOA addresses the “Healthy People 2010” focus area of Immunization and 
Infectious Diseases,. This FOA is in alignment with HHS/CDC/NCIRD’s performance 
goal(s) to Prevent disease, disability, and death from infectious diseases, including 
vaccine-preventable diseases.. For more information, see 
www.health.gov/healthypeople and http://intra-apps.cdc.gov/fmo/ 
 
The purpose of this funding is to facilitate research that describes individual social 
contact and mixing patterns in school-aged children across a range of community 
settings to improve the precision of contact rate estimation and parameterization for 
infectious disease transmission models to support the development of disease 
prevention and control strategies. The objectives of these studies are to quantify age-
specific individual social contact and mixing patterns of school-aged children as they 
migrate within and across a range of community settings (schools, home, dormitories, 
community) using both previously established and newer methods of assessment.  
 
Background 
During the response to the emerging 2009 H1N1 pandemic public health officials 
leveraged infectious disease models to develop a range of plausible pandemic severity 
scenarios to explore the implementation of both pharmaceutical and non 
pharmaceutical interventions aimed at mitigating the impact of the pandemic.  Essential 
components of infectious disease models which influence disease transmission 
dynamics are the assumed contact rates and mixing patterns of infectious and 
susceptible members of the modeled population. Due to a paucity of empirical data from 
the United States supporting these estimates, recent efforts have attempted to directly 
quantify these parameters within and across various age groups and community 
settings using population based surveys and self reported diaries of contact and mixing 
patterns. Most of these studies rely on self reporting and may not objectively capture 
individual proximity or the duration of contact both of which have been shown to vary by 
location and which may be important for disease transmission. Quantification of 
individual contact rates and mixing patterns through a combination of subjective and 
objective methods may provide closer approximations of these variables within 
infectious disease models as well as offer a means of validating current methods of 
assessment. The role of contact rates and mixing patterns are of particular interest in 
school-aged children who have been shown to be the sentinel cohort diagnosed with 
influenza in syndromic surveillance systems, experience higher rates of infection during 
the influenza season and shed influenza virus for approximately twice as long as the 
estimated period of infectiousness for adults.  Due to uncertainty regarding the benefit 
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of social distancing measures  such as school closure which is sensitive to contact rates 
and mixing patterns, more precise estimates of these variables will support further 
research into the benefit of this and other non pharmaceutical interventions. 
 
Below are the objectives, which the applicant must respond to: 
 

 Describe and quantify age-specific individual social contact and mixing patterns 
of school-aged children (K through 12th grade) across a range of community 
settings (schools, dormitory, home, community) using both previously established 
and newer methods of quantitative assessment. 
 

 Studies must use (1) representative cross-sectional studies (surveys),  or 
prospective observational studies, (2) prospective self diaries/evaluations, and a 
smaller proportion of data collection through the use of (3) GPS technologies in 
the form of Personal Tracking Devices to collect individual contact and mixing 
data consistent with or superior to the proximity determination limitations of 
current technology  
 

 Studies should attempt to study as many of the following as possible:  
 

 elementary schools  
 high schools selected from both urban and rural settings  
 one specialized setting (boarding school, camp).  

 

 The studies must propose methods to collect variables that may be related to 
contact rates and mixing patters including but not limited to the gender and age 
of study subjects, the type, location, frequency and duration of contacts, 
classroom sizes, and relevant characteristic of the physical environment such as 
square footage. 
 

 Study proposals must incorporate an active surveillance component to permit 
correlation analysis between observed contact/mixing patterns and the incidence 
of influenza-like illness over the course of the study period. 
 

 Since seasonality may influence contact rates and mixing patterns, the potential 
study period should include all twelve months of the year, including weekdays 
and weekends during the chosen study period   

 

 All studies must provide a plan to ensure the security and protection of the 
identities of the study participants. 
 

 Studies must compare the observations from GPS technologies in the form of 
Personal Tracking Devices to assess the level of agreement in estimating contact 
rates and mixing patterns. 
 



 Study proposals must include a plan to document uptake of  any routine disease 
prevention measures among participants (e.g. seasonal influenza vaccination), 
as well as any non-pharmaceutical interventions that are routinely or reactively 
implemented during the course of an outbreak of a influenza-like respiratory 
illness 

 

 Propose a plan for laboratory testing for influenza to be implemented if an acute 
outbreak of influenza-like illness is observed during the observation period of the 
study.  

 

 Use reverse transcription polymerase chain reaction (RT-PCR) testing to identify 
influenza viruses and not rapid diagnostic which lack optimal sensitivity in low 
prevalence settings.  
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PRESENTERS 
 
Derek Cummings is an Associate Professor at the Department of Epidemiology at 
Johns Hopkins Bloomberg School of Public Health.  The goal of his research is to 
understand the temporal and spatial dynamics of the spread of infectious diseases in 
order to inform interventions to control their spread. His research includes empirical 
work and theoretical approaches to simulate the spread of pathogens in populations. He 
is specifically interested in the dynamics of influenza, dengue hemorrhagic fever, 
measles and chikungunya.  Dr. Cummings is Co-PI of SMART (Social Mixing and 
respiratory transmission).  Email: dcumming@jhsph.edu 
 
Molly Leecaster is Assistant Professor at the University Of Utah School Of Medicine, 
Division of Epidemiology and a researcher with the Salt Lake City Veterans Health 
Administration. She received her BS in mathematics at the University of Wisconsin, MS 
in statistics from Virginia Tech, and PhD in statistics from Colorado State University. Her 
statistical expertise is in sample design and modeling and has covered applications 
from environmental characterization to national security, and infectious diseases, 
healthcare epidemiology, and health services. She has been involved in modeling 
projects for MRSA, C. difficile, RSV, H1N1, and seasonal influenza, applying 
compartmental, individual-level, and agent-based models. The methods include 
frequentist and Bayesian statistics, data-driven, and model-based approaches to 
estimate model parameters and predict transmission and epidemic characteristics. Dr. 
Leecaster is the Co-PI of Contact among Utah’s School-age Population (CUSP). Email: 
Molly.Leecaster@utah.edu 
 
Marcel Salathé, PhD is an assistant professor of biology at the Center for Infectious 
Disease Dynamics. A Branco Weiss Society in Science fellow, he studies how social 
networks affect the spread and control of infectious diseases. His research group 
currently uses complex systems models, wireless sensor network technology and large-
scale data sets from online social media sites to analyze the spread of disease and 
health behaviors on social networks. The group's main goal is to measure and improve 
health outcomes with basic research, mobile technology and social media. His research 
program is rooted in four observations (in no particular order of priority):  
Fundamentally, health and disease are biological phenomena, but ignoring the effect of 
human behaviors on health and disease outcomes would be ignoring the main drivers of 
health and disease dynamics in the 21st century; The internet - in all its flavors, ranging 
from static websites, to communication tools such as email, to social media, to the 
mobile internet (smartphones, sensors, etc.) - has become a source of information 
about human behaviors at an unparalleled scale. This opens up completely new 
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research fields; The ability to collect, mine, filter, analyze and visualize enormously 
large data sets from this data source is one of the great practical and educational 
challenges of our times; Programming is becoming the lingua franca of science.  Email: 
salathe@psu.edu 
 
Shanta Zimmer is Associate Professor of Medicine at the University of Pittsburgh 
School of medicine.  She is an infectious diseases physician with research and clinical 
experience in immunology and vaccinology, clinical research, infectious disease 
modeling, and education and translational research examining dynamics of influenza 
transmission and epidemic prevention. She is a research consultant to research 
projects at the Center for Vaccine Research and the Public Health Dynamics Lab at the 
University of Pittsburgh. She is also involved in implementation of hospital and 
outpatient clinic quality improvement strategies to reduce respiratory viral transmission 
in the clinical setting.  Dr. Zimmer is Co-PI on the Social Mixing and Respiratory 
Transmission (SMART).  Email: zimmersm2@upmc.edu 
 
Jonathan Read is a Lecturer within the Epidemiology and Population Health 
Department of the University of Liverpool, UK. His research interests include the 
transmission and evolutionary dynamics of infectious diseases, for both human and 
animal pathogens. A substantial part of this interest lies in understanding and 
quantifying patterns of mixing and travel, and the formation of contact networks. He 
currently works on infectious disease projects in UK, USA, China, Hong Kong, Thailand, 
Vietnam and Malawi. Dr Read is a co-I on the SMART project. Email: 
Jonathan.Read@liverpool.ac.uk 
 
Damon Toth, PhD, is an Assistant Professor in the Division of Epidemiology and an 
Adjunct Assistant Professor in the Department of Mathematics at the University of Utah. 
He received a PhD in Applied Mathematics from the University of Washington. He has 
designed mathematical models and computer simulations of infection and transmission 
of disease in schools, hospitals, and larger communities, for use in risk assessment and 
in planning strategies for interventions to reduce transmission. As part of the CUSP 
(Contact among Utah's School-age Population) study, he has designed an agent-based 
influenza transmission model that makes direct use of high fidelity contact data from 
several schools and other venues in Utah. Email: toth@math.utah.edu 
 
Amra Uzicanin MD MPH is a medical epidemiologist with the Centers for Disease 
Control and Prevention (CDC) in Atlanta, GA. Since 2010, she has been leading a new 
group at CDC dedicated to developing the scientific evidence base for use of non-
pharmaceutical interventions for infectious disease control with focus on pandemic 
influenza. Her research interests include influenza and other respiratory infections, 
respiratory infectious disease transmission dynamics, and measles, rubella, and other 
vaccine-preventable diseases. Dr. Uzicanin has been with CDC since 1998, first as an 
Epidemic Intelligence Service Officer, and then serving in various scientific positions 
with CDC’s global immunization programs.  Prior to joining CDC she led multiple 
international medical programs for the International Federation of Red Cross and Red 
Crescent Societies and worked as a practicing physician in her native Bosnia and 



Herzegovina. Dr. Uzicanin  leads a unit at CDC that initiated, supported and funded the 
research presented here.  Email: aau5@cdc.gov 
 
 
MODERATORS 
 
Charles J. Vukotich, Jr. is a Senior Project Manager in the Center for Public health 
Practice at the Graduate School of Public Health, University of Pittsburgh.  He retired 
after 30 years from the Allegheny County Health Department (ACHD).  His research 
interests includes studying how children catch, spread, and prevent diseases in schools 
(k-12), focusing primarily on pandemic and seasonal influenza.  He has also studied the 
integration of research into schools, directing the School Based Research and Practice 
Network, and worked on public health preparedness.  Mr. Vukotich is the Project 
Manager for SMART. Email: charlesv@pitt.edu 
 
Jeanette Rainey, MPH, PhD is an epidemiologist with the Division of Global Migration 
and Quarantine at the Centers for Disease Control and Prevention (CDC). She assists 
with the coordination and implementation of research on the effectiveness and feasibility 
of non-pharmaceutical interventions to mitigate pandemic influenza and other acute 
respiratory infections. Dr. Rainey has extensive international research experience 
related to vaccine preventable disease surveillance and vaccination coverage 
assessments. Prior to her time with CDC, she worked with the Los Angeles County and 
California State Health Departments.  Dr. Rainey is the CDC program officer for the 
‘Quantifying Contact Rates and Mixing Pattern in School-Aged Children’ projects. Email: 
jkr7@cdc.gov 
.  

 



1

2 What is your school ID code?

3 How old are you?

years oldI am

4 Are you a boy or a girl? 

a boy a girl
like this

Put an X in
one box,

like this

Write one letter or
number in each box,

1 2 3 4

5 Not counting you, how many people live in your home?

people

About your family and home

7 Does anyone in your house go to pre‐school or day care?

No Yes

If yes, how many people go to 
pre‐school or day care?

people

6 Does any other person sleep in your bedroom?

No Yes

If yes, how many people sleep in your 
bedroom, not counting you?

people

7

About where you go

12 Where is the furthest place from your home you 
went in the past 7 days?

City or town

The SMART study
Social Mixing And Respiratory Transmission 
in schools

14 When you missed school, did you stay at your home?

About feeling sick and staying away from school

15 When you missed school, who took care of you?

No Yes

Sometimes when we are sick, we don't go to school.
These questions are about the last time you were 
sick and didn't go to school.

No‐one Your Mom or Dad

A brother or sister, or 
someone else you live with

Someone who doesn't 
live with you

Don't know

8 Does anyone in your house go to 
elementary school (grades K to 6)?

No Yes

If yes, how many people?

people

9 Does anyone in your house go to 
middle school (grades 7 or 8)?

No Yes

If yes, how many people?

people

10 Does anyone in your house go to

high school (grades 9 to 12)?

No Yes

If yes, how many people?

people

18 Did you attend school YESTERDAY?

About YESTERDAY

19 If you missed school, why was this?

No Yes

The rest of this questionnaire asks about your day YESTERDAY.
If you can't remember what you did yesterday, ask your teacher 
for help.

I was sick or ill

School was closed

Some other reason

20 How did you get to school YESTERDAY?

walked or biked

by car

school bus

public bus

didn't go to school

some other way

Do not count yourself

Do not count yourself

11 What is the zipcode of your home address?

County

State

Country

13 Where is the furthest place from your home you 
went in the past 30 days?

16 Did you get a flu vaccination this school year?

No Yes Don't know

17 Do you believe flu vaccines protect you against the flu?

No Yes Don't know

Please write carefully and, where appropriate,  
mark boxes with an 'X'

City or town

County

State

Country

Put your ID sticker in this box

About You

What is your school grade?
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Your contact diary
This page asks you about the 
people you met yesterday

SECTION A

people you talked with
people you played with
people you touched 
with your hands or face

Do include:

children and teachers you spoke to at school

children or adults you to outside of school

people whose skin you touched (e.g. while playing games)

anyone you briefly spoke with on the way home from school

Do not include:

people you did not talk to

people you only talked with through 
a telephone or computer

pets or toys

someone you walked past, but did 
not speak to or touch their skin

people you did not meet yesterday

Steps to follow

In                            write down the name or nick-name for everyone you met yesterday.
For example, "mom", "Derek", "my best friend", "mailman".
Don't write more than one person's name in each box.

SECTION Astep 1 

Answer questions        to        for each of your contacts.step 2 21 32

Ask your teacher for your two random numbers.
Write these in the spaces at the top of questions       and    
These numbers refer to two of your contacts.
Answer questions       and        for all of your contacts.

step 3 
33 34

33 34

Put your ID sticker in this box
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The SMART study
Social Mixing And Respiratory Transmission 
in schools

35 Did you meet any more people yesterday that 
you haven't told us about?

No Yes

36 If yes, how many more people did you 
meet yesterday?
Write how many in the boxes

Babies and infants 
(0‐4 years old)

Children 
(5‐18 years old)

Grown‐ups
(19 or older)

37 Did you meet more or less people yesterday
than normal?

Less

About the same

More

38 How easy did you find this questionnaire?

Very easy

39 What was hard about it?
Please write in the box below. 

Easy

Hard

Very hard

Don't know

When you have finished and checked your form:

tear off and keep 
from your contact diary page

make sure you have put your ID stickers in 
the boxes on all three pages

hand all the pages back to your teacher

SECTION A

Put your ID sticker in this box



Version:
Date:

Additional requirements:  1. List of 12 named individuals specifc to the subject

About the subject:

ID of subject Subject absent (or unable to interview)?

School ID � YES [1] � NO [0]

Date of interview mm: dd: yy:

SECTION A. ACTIVITIES YESTERDAY

Q1 How many people did you meet in your home yesterday? (including people you live with)
Write an integer number (zero for nobody) or DON’T KNOW [-2], or DECLINE [-1].

Q2 Did you go to any of these places or do these things yesterday?
Other or special event

Someone else's home Yes [1] � No [0] � Shopping Mall or Store Yes [1] � No [0] � (particularly if involving lots of individuals)

Don't know [-2] � Decline [-1] � Don't know [-2] � Decline [-1] � Please specify

School Bus Yes [1] � No [0] � Restaurant Yes [1] � No [0] �
Don't know [-2] � Decline [-1] � Don't know [-2] � Decline [-1] �

Public Transport Yes [1] � No [0] � Movies or Pictures Yes [1] � No [0] �
 (including Port Authority bus) Don't know [-2] � Decline [-1] � Don't know [-2] � Decline [-1] �

After-school programme Yes [1] � No [0] � Church Yes [1] � No [0] �
Don't know [-2] � Decline [-1] � Don't know [-2] � Decline [-1] �

Sports Yes [1] � No [0] � Doctors Office Yes [1] � No [0] �
Don't know [-2] � Decline [-1] � Don't know [-2] � Decline [-1] �

Q3 Were you absent from school yesterday?
Yes [1] � No [0] �

Don't know [-2] � Decline [-1] �

Q4 Did you get a flu vaccination this school year? (since August)
Yes [1] � No [0] �

Don't know [-2] � Decline [-1] �

Questionnaire for Year 2 contact and symptom surveillance

NOTE: When delivered on a MONDAY, 

YESTERDAY refers to Friday the previous 

week, in all sections of this questionnaire.

yr2A.4
######################



SECTION B.RELATIONSHIP AND CONTACT WITH NAMED INDIVIDUALS

Please refer to your list of names. These correspond to the numbered rows below.
Ask the subject questions about each of the named individuals.
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Q11 How long did 

you spend 

together overall 

yesterday?

�

�

�

Tick all that apply. [0 or 1]

Q7 Did you 

talk with 

[NAME] 

yesterday? If 

NO go to next 

NAME and Q5.

Q6 Is this 

person a 

friend of 

yours?

Q5 Do you 

know who 

[NAME] is?

Q8 Where did you talk to this 

person?

These questions are all about YESTERDAY (or the previous school day if yesterday was a 

holiday/weekend)

Q12 Out of all of the 

people that I have asked 

about, which one do you 

think has the most 

friends? Mark the 

individual. [0 or 1]

Only ask question Q12 

when completed Q5-Q11 

for all 12 individuals.
Q9 Did you 

touch their 

skin?

Q10 Did you both 

hold the same toy 

or object 

yesterday?

Name of Named 
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SECTION C. SYMPTOMS OF INFLUENZA LIKE ILLNESS

Q13 Have you been sick in the last seven days (since last [DAY])?
� No [0]
� Yes [1]
� Don't Know [-2]

� Decline [-1]

If Q13 = YES
Q14a Did you have a cough? Q14b Did you have a sore throat? Q14c Did you have a runny nose? Q14d Did you have a fever?

� No [0] � No [0] � No [0] � No [0]
� Yes [1] � Yes [1] � Yes [1] � Yes [1]
� Don't Know [-2] � Don't Know [-2] � Don't Know [-2] � Don't Know [-2]

� Decline [-1] � Decline [-1] � Decline [-1] � Decline [-1]

Q14e Did you have a headache? Q14f Did you have vomiting / diarrhea / nausea? Q14g Did you have muscle aches?
� No [0] � No [0] � No [0]
� Yes [1] � Yes [1] � Yes [1]
� Don't Know [-2] � Don't Know [-2] � Don't Know [-2]

� Decline [-1] � Decline [-1] � Decline [-1]

Q15 How many people you live with have been sick in the past seven days?
Write an integer number (zero for nobody) or DON’T KNOW [-2], or DECLINE [-1].

THIS IS THE END OF THE INTERVIEW. THANK THE SUBJECT FOR THEIR TIME AND ASSISTANCE.
DIRECT THE SUBJECT BACK TO THEIR CLASS OR WAITING AREA.



November 5, 2012 12:26 am
By Jack Kelly / Pittsburgh Post-Gazette

With the help of children who'll be off of school for Tuesday's election, researchers at the University of
Pittsburgh hope to find out if school closings can slow the spread of flu and other disease.

Today researchers will distribute remote sensors called motes to about 450 students at Borland Manor
Elementary and North Strabane Intermediate schools in the Canon-McMillan School District in
Washington County. Students will wear the motes, the size of a beeper and weighing 3 ounces, on
lanyards around their necks today, Tuesday and during the school day Wednesday. Researchers will
collect the motes before school is dismissed.

Powered by batteries, motes send out a signal that will detect another mote when they get close to each
other, and the encounter is electronically recorded. Data collected from motes should give researchers a
comprehensive picture of how often children interact.

"This is the first time this is being done anywhere, ever," said Charles Vukotich Jr., senior project
manager at Pitt's Graduate School of Public Health.

The Social Mixing And Respiratory Transmission in Schools, or SMART, study is funded by a $700,000
grant from the U.S. Centers for Disease Control and Prevention.

The idea for the study was prompted by the 2009 H1N1 influenza pandemic, which infected more than a
million Americans and led to the death of more than 18,000 people worldwide, according to the World
Health Organization.

Seasonal flu typically affects older people. But H1N1 was first detected in a 10-year-old in California,
then next in an 8-year-old.

The data from the motes will help Pitt researchers identify nonpharmaceutical means of containing flu
and other epidemics among schoolchildren, Mr. Vukotich said. This is vitally important, he said, because
"in the early part of a pandemic, there won't be a vaccine."

This was certainly true of H1N1, which, the CDC said, was "a unique combination of influenza virus
genes never previously identified in either animals or people."

The purpose of the SMART study is to find answers to several questions about transmission during a flu
outbreak: What are the most effective means of keeping it from spreading? During the school day, should
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movement among classes be restricted? Would more vaccinations help? Should children who show signs
of the flu be sent home? Be kept in a separate room? Should sick leave policies for teachers and
administrators be changed?

Pitt researchers will use the data to construct models of how schoolchildren interact so they can develop
the most effective preventive measures.

This is the second year for the SMART study. Last year elementary, middle and high school students in
eight schools in the Canon-McMillan School District and Propel Charter Schools in Allegheny County
wore the motes during a school day.

Last year's study showed that the typical student interacts with 109 children during the school day. High
school students have more interactions than do younger students. Most interactions occur at lunchtime.

The expanded study this year will give Pitt researchers information about how often children interact
outside of school.

Jack Kelly: jkelly@post-gazette.com or 412-263-1476.

First Published November 5, 2012 12:24 am
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About 450 Washington County students will help University of
Pittsburgh researchers next week learn more about how flu
spreads.

The students, who attend Borland Manor Elementary and North
Strabane Intermediate schools in the Canon-McMillan School
District, will come home on Monday wearing electronic proximity
sensors. The devices, called motes, will record when the students
come in contact with each other.

These “electronic tags,” which could collectively record as many as
1 million pieces of data in a typical day, will tell researchers how
many times kids come together for conversations, sharing items or
other activities, and how far apart they are, said Charles Vukotich
Jr., senior project manager at Pitt’s Graduate School of Public
Health.

From that data, researchers will be able to better measure how influenza spreads in schools. If,
that is, the kids hold up their end of the bargain and wear the 3-ounce devices all day on Monday,

This is a mote, a three-ounce electronic device about the size of a beeper,
that students in some Canon-McMillan schools will be wearing Nov. 5 -
Nov.7 to measure who they come in contact with as part of a CDC study on
how influenza spreads. The device will be worn on lanyards around their
necks
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Tuesday and Wednesday, when they’ll be returned.

“The little kids kind of think they’re cool,” said Shanta Zimmer, associate professor in Pitt’s School
of Medicine. “The older kids ... we can tell there’s been some tampering.”

The motes send out a weak signal every 20 seconds to detect other motes and record when they
detect one.

Students in Canon-McMillan schools participated in the study last year, but this will be the first
time they will wear the motes on a scheduled day off from school. Preliminary data from last year’s
study, which also included Propel charter school students in Allegheny County, showed that each
child interacted with an average of 109 other children during the school day.

One of the key questions the study hopes to answer is how effective closing schools might be in
stopping the spread of flu, the researchers said.

“Last year there were significant numbers recorded overnight,” Vukotich said, providing some
evidence that simply closing schools for a few days won’t stop children from interacting with each
other.

The two-year study, funded by Centers for Disease Control and Prevention, is also being conducted
at Penn State and Utah.

Dubbed the “Social Mixing and Respiratory Transmission in Schools,” or SMART Schools study, it
is part of a CDC effort to create a national policy on school response to flu and other pandemics.

“There was very little resistance to the project. It was only done with (parents’) approval,” said
Michael Daniels, Canon-McMillan superintendent. “We hope this study will mean fewer illnesses
and fewer absences.”

Zimmer said researchers “know that children can drive influenza outbreaks, but we don’t know
how or why. Knowing their interaction and contact patterns will give us much-needed real-world
data.”

Craig Smith is a staff writer for Trib Total Media. He can be reached at 412-380-5646 or
csmith@tribweb.com.

Copyright © 2012 — Trib Total Media
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•	 IEEE	802.15.4	Compliant	

•	 250	kbps,	High	Data	Rate	Radio	

•	 TI	MSP430	Microcontroller	with	
10kB	RAM	

•	 Integrated	Onboard	Antenna	

•	 Data	Collection	and	Programming	
via	USB	Interface

•	 Open-source	Operating	System	

•	 Integrated	Temperature,	Light	and		
Humidity	Sensor	

Applications

•	 Platform	for	Low	Power		
Research	Development	

•	 Wireless	Sensor	Network		
Experimentation

MEMSIC’s	TelosB	Mote	TPR2420	is	
an	open-source	platform	designed	
to	enable	cutting-edge	experimenta-
tion	for	the	research	community.	The	
TPR2420	bundles	all	the	essentials	for	
lab	studies	into	a	single	platform	
including:	USB	programming	capa-
bility,	an	IEEE	802.15.4	radio	with	
integrated	antenna,	a	low-power	
MCU	with	extended	memory	and	an	
optional	sensor	suite.	TPR2420	offers	
many	features,	including:

•	IEEE	802.15.4	compliant		
	 RF	transceiver

•	2.4	to	2.4835	GHz,	a	globally
	 compatible	ISM	band

•	250	kbps	data	rate

•	Integrated	onboard	antenna		 	

•	8	MHz	TI	MSP430	microcontroller	
	 with	10kB	RAM

•	Low	current	consumption

•	1MB	external	flash	for	data	
	 logging

•	Programming	and	data	collection		
	 via	USB

•	Sensor	suite	including	integrated	
	 light,	temperature	and		 	
	 humidity	sensor

•	Runs	TinyOS	1.1.11	or	higher

TELOSB MOTE PLATFORM

The	TelosB	platform	was	developed	
and	published	to	the	research	comm-
unity	by	UC	Berkeley.	This	platform	
delivers	low	power	consumption	
allowing	for	long	battery	life	as	well	
as	fast	wakeup	from	sleep	state.	The	
TPR2420	is	compatible	with	the	
open-source	TinyOS	distribution.		

TPR2420	is	powered	by	two	AA	bat-
teries.	If	the	TPR2420	is	plugged	
into	the	USB	port	for	programming	
or	communication,	power	is	pro-
vided	from	the	host	computer.		If	the	
TPR2420	is	always	attached	to	the	
USB	port	no	battery	pack	is	needed.

TPR2420	provides	users	with	the	
capability	to	interface	with	additional	
devices.	The	two	expansion	connec-
tors	and	onboard	jumpers	may	be	
configured	to	control	analog	sensors,	
digital	peripherals	and		LCD	displays.

TinyOS	is	a	small,	open-source,	
energy-efficient	software	operating	
system	developed	by	UC	Berkeley	
which	supports	large	scale,	self-con-
figuring	sensor	networks.	The	source	
code	software	development	tools	are	
publicly	available	at:	
http://www.tinyos.net

TELOSB 

TELOSB

TPR2420CA	Block	Diagram

Temp./
Humidity
Sensor

Light
Sensor
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Ordering Information

Notes
1Programmable	in	1	MHZ	steps,	5	MHz	steps	for	compliance	with	IEEE	802.15.4/D18-2003.

Specifications	subject	to	change	without	notice

TPR2420	with	Sensor	Suite

Model Description

TPR2420CA IEEE	802.15.4	TelosB	Mote	with	Sensor	Suite

Specifications TPR2420CA Remarks

Module

Processor	Performance 16-bit	RISC

Program	Flash	Memory 48K	bytes

Measurement	Serial	Flash 1024K	bytes

RAM 10K	bytes

Configuration	EEPROM 16K	bytes

Serial	Communications UART 0-3V	transmission	levels

Analog	to	Digital	Converter 12	bit	ADC 8	channels,	0-3V	input

Digital	to	Analog	Converter 12	bit	DAC 2	ports

Other	Interfaces Digital	I/O,I2C,SPI

Current	Draw 1.8	mA Active	mode

5.1	µA Sleep	mode

RF Transceiver

Frequency	band1 2400	MHz	to	2483.5	MHz 	ISM	band

Transmit	(TX)	data	rate 250	kbps

RF	power -24	dBm	to	0	dBm

Receive	Sensitivity -90	dBm	(min),	-94	dBm	(typ)

Adjacent	channel	rejection 47	dB +	5	MHz	channel	spacing

38	dB -	5	MHz	channel	spacing

Outdoor	Range 75	m	to	100	m Inverted-F	antenna

Indoor	Range 20	m	to	30	m Inverted-F	antenna

Current	Draw 23	mA Receive	mode

21	µA Idle	mode

1	µA Sleep	mode

Sensors

Visible	Light	Sensor	Range 320	nm	to	730	nm Hamamatsu	S1087

Visible	to	IR	Sensor	Range 320	nm	to	1100nm Hamamatsu	S1087-01

Humidity	Sensor	Range 0-100%	RH Sensirion	SHT11	

															Resolution 0.03%	RH

															Accuracy ±	3.5%	RH Absolute	RH

Temperature	Sensor	Range -40°C	to	123.8°C Sensirion	SHT11

															Resolution 0.01°C

															Accuracy ±	0.5°C @25°C

Electromechanical

Battery 2X	AA	batteries Attached	pack

User	Interface USB v1.1	or	higher

Size									(in) 2.55	x	1.24	x	0.24 Excluding	battery	pack

															(mm) 65	x	31	x	6 Excluding	battery	pack

Weight				(oz) 0.8 Excluding	batteries

															(grams) 23 Excluding	batteries
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SI Methods
Data Collection. General. On January 14, 2010, we distributed
wireless senor network motes (TelosB; Crossbow Technologies
Inc.) to all students, teachers, and staff at an American high
school (the date was chosen because it represented a typical
school day). Participants were asked to sign an assent form on
which they indicated at what time the mote was turned on. The
assent form also asked participants to indicate their role/status at
the school, with the following four options available: “student,”
“teacher,” “staff,” and “other.” At the end of the day, we col-
lected the motes and assent forms and then obtained data with
the corresponding assent from 789 motes/individuals. Some of
the motes had not been used (because of people either being
absent from the school or not participating in the project), and
we did not obtain written assent to use the data for some motes
with data. The remaining data cover 94% of the entire school
population. We also deployed motes at fixed locations (stationary
motes), but these are not part of the dataset described here except
for one stationary mote in the main cafeteria; the signal of this
mote was used to reconstruct the global timestamp (see below).
Deployment details. Motes were distributed in batches (with an
average of ∼11 motes) the night before the deployment and
handed out to participants starting around 6:00 AM (with the
vast majority of participants receiving and activating their motes
on arrival at 8:00 AM). Participants were asked to put their mote
in a thin plastic pouch attached to a lanyard (provided by us) and
to wear the lanyard around the neck, with the mote being located
in front of the chest at all times. The participants handed the
motes back to us when leaving the school or at the end of the
school day (the vast majority was received between 4:00 and 4:30
PM). The technical details regarding code design, signal strength
considerations, and other issues have been described elsewhere
(1); however, briefly, each participant’s mote was programmed to
broadcast beacons at −16.9 dBm at a regular 20-s interval; the
packet included the sender’s local sequence number. On re-
ceiving a beacon, the mote checked the received signal strength
indicator (RSSI) value of the packet. Note that the motes are
always scanning; thus, no interactions with a duration of at least
20 s will be missed. If the signal strength was lower than −80 dBm,

the packet was discarded (this decision was based on experi-
mental data showing that when subjects were facing each other,
packets within 3 m had an RSSI value of roughly −80 dBm or
above; packets sent when one subject was facing the other per-
son’s back had a lower RSSI value (1) (Fig. S4). Otherwise, the
receiver created a contact entry, consisting of the sender’s
ID and beacon sequence number as well as the local mote’s
sequence number and the RSSI value of the packet.
TelosB motes have a 1-MB flash memory in which interactions

can be stored, thus eliminating the need to broadcast interactions
to any other external hardware for storage. As a consequence,
interactions between subjects can be captured anywhere on the
campus of the school, an area of more than 45,000 m2.
Reconstructing the full contact network required a global

timestamp, relative to which all interactions between subjects
occurred. Local sequence numbers in each data trace acted as
relative clocks, and they could be used as offsets from one sta-
tionary mote (the “master stationary mote,” located in the main
cafeteria), which would be the master clock providing global
time. Packets originating from this mote were transmitted at high
power (−11 dBm) and were not subject to RSSI filtering at the
receiver. More than 90% of mobile motes had received one or
more beacons from the master stationary mote. For these mobile
motes, we calculated the offset between the master and local
sequence numbers. In addition, we created a table of offsets to
serve as a lookup table, which included mobile motes as well as
other stationary motes. To process data traces from mobile
motes that did not hear directly from the master stationary mote,
we used the offsets table transitively to compute a timestamp
from another mote that already had its global time.
After processing the raw data, we thus obtained a list of inter-

actions that contains 762,868 unique interactions between two
motes for a duration of n consecutive beacon intervals (Datasets
S1, S2, and S3). Because beacons are broadcast every 20 s, the
number of beacons can be used as an approximate measure of
contact duration (such that duration in minutes was approxi-
mately n/3).
This project was approved by the Stanford University In-

stitutional Review Board on July 24, 2009.

1. Kazandjieva M, et al. (2010) Experiences in measuring a human contact network for
epidemiology research. HotEmNets ’10: Proceedings of the ACM Workshop on Hot

Topics in Embedded Networked Sensors, (Association for Computing Machinery,
Killarney, Ireland).
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Fig. S1. Temporal dynamics of the average number of contacts (degree). Here, the degree of an individual is measured as the number of other individuals in
close proximity during 5 min. Gray background spans the 2.5% and 97.5% percentiles of the degree distribution.
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Fig. S2. Squared correlation (r2) between outbreak size and degree of index case (black), outbreak size and strength of index case (red), and degree and
strength of index case (blue) at various sampling rates. The left-most correlations are based on the full dataset (sampling interval of 1/3 min), and all others are
based on subsampled datasets that would have been generated with the given sampling interval. The shaded area behind the line shows the 95% confidence
interval of squared correlation.
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Fig. S3. Settings identical to those described in Fig. 4B, but the results are separated according to transmission probabilities per CPR used [0.002 (A), 0.003 (B),
and 0.0045 (C)].
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Fig. S4. Dependency of signal strength on distance (1, 2, 3, and 4 m), orientation (a, b, c, and d forward or backward), and angle (0°, 45°, 90°, and 135°). The
black horizontal line shows the threshold value that was chosen for the data collection. (A) Points show the average signal strength, and bars represent the SD
of a particular measurement. Some settings lack data because no packets were received. (A slight horizontal offset was added to the data points for visual
clarity.) (B) Spatial setting of the four angles and two directions are shown, with reference to the main mote.
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A high-resolution human contact network for
infectious disease transmission
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The most frequent infectious diseases in humans—and those with
the highest potential for rapid pandemic spread—are usually
transmitted via droplets during close proximity interactions (CPIs).
Despite the importance of this transmission route, very little is
known about the dynamic patterns of CPIs. Using wireless sensor
network technology, we obtained high-resolution data of CPIs
during a typical day at an American high school, permitting the
reconstruction of the social network relevant for infectious disease
transmission. At 94% coverage, we collected 762,868 CPIs at a max-
imal distance of 3 m among 788 individuals. The data revealed
a high-density network with typical small-world properties and
a relatively homogeneous distribution of both interaction time
and interaction partners among subjects. Computer simulations
of the spread of an influenza-like disease on the weighted contact
graph are in good agreement with absentee data during the most
recent influenza season. Analysis of targeted immunization strat-
egies suggested that contact network data are required to design
strategies that are significantly more effective than random immu-
nization. Immunization strategies based on contact network data
were most effective at high vaccination coverage.

disease dynamics | network topology | public health | human interactions

Pandemic spread of an infectious disease is one of the biggest
threats to society because of the potentially high mortality

and high economic costs associated with such an event (1, 2).
Understanding the dynamics of infectious disease spread
through human communities will facilitate the development of
much needed mitigation strategies (3). Schools are particularly
vulnerable to infectious disease spread because of the high fre-
quency of close proximity interactions (CPIs) that most in-
fectious disease transmission depends on (3, 4). Infections that
are transmitted predominantly via the droplet route, such as
influenza, common colds, whooping cough, severe acute re-
spiratory syndrome (SARS), and many others, are among the
most frequent infectious diseases. Droplets from an infected
person can reach a susceptible person in close proximity, typi-
cally a distance of less than 3 m (5, 6), making CPIs highly rel-
evant for disease spread. Very little is known about the dynamic
patterns of CPIs in human communities, however [but see Cattuto
et al. (7)]. Here, we present data collected with a wireless
sensor network deployment using TelosB motes (Crossbow
Technologies Inc.) (8) to detect high-resolution proximity (up
to 3 m) between subjects in a U.S. high school. The dataset
represents a high-resolution temporal contact network relevant
to the spread of infectious diseases via droplet transmission in
a school.
Previous attempts to capture the contact networks relevant for

infectious disease transmission have mostly been based on data
collection using surveys, sociotechnological networks, and mo-
bile devices like cell phones. Each of these approaches has
advantages and disadvantages. Surveys manage to capture the
interactions relevant for disease transmission but are often lim-
ited by small sample sizes (9) and are subject to human error
(10). Sociotechnological networks can provide large long-term
datasets (11) but fail to capture the CPIs relevant for disease
transmission. The use of mobile devices aware of their location

(or of other mobile devices in proximity) represents a promising
third alternative. Using mobile phones to detect spatial proximity
of subjects is possible with repeated Bluetooth scans (10), but the
resolution is too coarse for diseases that are transmitted through
the close contact route. Our approach is free of human error,
captures the vast majority (94%) of the community of interest,
and allows us to collect high-resolution contact network data
relevant for infectious disease transmission.
Most efforts to understand and mitigate the spread of pan-

demic diseases (influenza in particular) have made use of large-
scale spatially explicit models parameterized with data from
various sources, such as census data, traffic/migration data, and
demographic data (3, 4, 12–15). The population is generally di-
vided into communities of schools, workplaces, and households,
but detailed data on mixing patterns in such communities are
scarce. In particular, very little is known about the contact net-
works in schools (16) even though schools are known to play
a crucially important role in pandemic spread, mainly owing to
the intensity of CPIs at schools. In what follows, we describe and
analyze the contact network observed at a U.S. high school
during a typical school day. Using an SEIR (susceptible, exposed,
infectious, and recovered) simulation model, we investigate the
spread of influenza on the observed contact network and find
that the results are in very good agreement with absentee data
from the influenza A (H1N1) spread in the fall of 2009. Finally,
we implement and test various immunization strategies to eval-
uate their efficacy in reducing disease spread within the school.

Results
The dataset covers CPIs of 94% of the entire school population,
representing 655 students, 73 teachers, 55 staff, and 5 other
persons, and it contains 2,148,991 unique close proximity records
(CPRs). A CPR represents one close (maximum of 3 m) prox-
imity detection event between two motes. An interaction is de-
fined as a continuous sequence (≥1) of CPRs between the same
two motes, and a contact is the sum of all interactions between
these two motes. Thus, a contact exists between two motes if
there is at least one interaction between them during the day,
and the duration of the contact is the total duration of all
interactions between these two motes. Because the beaconing
frequency of a mote is 0.05 s−1, an interaction of length 3 (in
CPRs) corresponds to an interaction of about 1 min (SI Text and
references therein). The entire dataset consists of 762,868
interactions with a mean duration of 2.8 CPRs (∼1 min), or
118,291 contacts with mean duration of 18.1 CPRs (∼6 min)
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(data available in SI Methods). Fig. 1A shows the frequency, f, of
interactions and contacts of length m (in minutes) [f(m)]. The
majority of interactions and contacts are very short (80th per-
centile of interactions at 3 CPRs, 80th percentile of contacts at
15 CPRs), and even though about 80% of the total time is spent
in interactions that are shorter than 5 min, short contacts (<5
min) represent only about 10% of the total time (Fig. 1B).
The temporal mixing patterns observed are in accordance with

the schedule of the school day [i.e., the average degree (number
of contacts) peaks between classes and during lunch breaks] (Fig.
S1). The aggregate network for the entire day can be represented
by a weighted undirected graph, wherein nodes represent indi-
viduals and edges represent contacts (edges are weighted by
contact duration). The topology of the contact network is an
important determinant of infectious disease spread (17, 18).
Traditional infectious disease models assume that all subjects
have the same number of contacts, or that the contact network of
subjects is described by a random graph with a binomial degree
distribution. Many networks from a wide range of applications,
including contact networks relevant for infectious disease
transmission (19, 20), have been found to have highly hetero-
geneous degree distributions, however. Such heterogeneity is
important because it directly affects the basic reproductive
number, R0, a crucially important indicator of how fast an in-
fectious disease spreads and what fraction of the population will
be infected. In particular, if ρ0 is the incorrect estimate for R0
in a heterogeneous network under the false assumption of a
uniform degree distribution, the correct estimate is given by
R0 = ρ0 (1 + CV2), where CV2 is the squared coefficient of varia-
tion of the degree distribution (17, 21). Thus, the CV quantifies
the extent to which contact heterogeneity affects disease dynamics.
The descriptive statistics of the school network with different

definitions of contact are shown in Fig. 2. To account for the fact
that the majority of the contacts are relatively short (Fig. 1A), we
recalculated all statistics of the network with a minimum re-
quirement for contact duration, cm (i.e., all edges with weight <cm
are removed from the graph). The network exhibits typical “small-
world” properties (22), such as a relatively high transitivity (also
known as clustering coefficient, which measures the ratio of tri-
angles to connected triplets) and short average path length for all
values of cm. Assortativity, the tendency of nodes to associate with
similar nodes with respect to a given property (23), was measured
with respect to degree and role of the person (e.g., student,
teacher). Interestingly, although bothmeasures are relatively high,
degree assortativity decreases and role assortativity increases with
higher values of cm. Because of the very high density of the contact
network, a giant component exists for all values of cm. Community
structure (or modularity) is relatively high, increasingly so with
higher values of cm, indicating that more intense contacts tend to

occur more often in subgroups and less often between such groups
(24).Wefinda veryhomogeneousdegreedistributionwith aCV2=
0.118 for the full network and slightly increased heterogeneity
in the network with higher cutoff values cm (Fig. 2J). The dis-
tributions of number of interactions, c, and the strength, s (the
weighted equivalent of the degree) (25) are equally homogeneous
(Fig. 3). Overall, the data suggest that the network topology is best
described by a low-variance small-world network.
To understand infectious disease dynamics at the school, we

used an SEIR simulation model (parameterized with data from
influenza outbreaks; details presented in SI Methods), wherein an
index case becomes infected outside of the school on a random
day during the week and disease transmission at the school
occurs during weekdays on the full contact network as described
by the collected data. Each individual is chosen as an index case
for 1,000 simulation runs, resulting in a total of 788,000 epidemic
simulation runs. This simulation setting represents a base sce-
nario, wherein a single infectious case introduces the disease into
the school population. In reality, multiple introductions are to be
expected if a disease spreads through a population, but the base
scenario used here allows us to quantify the predictive power of
graph-based properties of individuals on epidemic outcomes. We
assume that symptomatic individuals remove themselves from
the school population after a few hours. We find that in 67.7% of
all simulations, no secondary infections occur and thus there is
no outbreak, whereas in the remaining 32.3% of the simulations,
outbreaks occur with an average attack rate of 3.87% (all sim-
ulations = 1.33%, maximum = 46.19%) and the average R0,
measured as the number of secondary infections caused by the
index case, is 3.85 (all simulations = 1.24, maximum = 18).
Recent work on disease spread on networks has identified the
relationship between R0, the network degree distribution, and
the average probability that an infectious individual transmits the
disease to a susceptible individual, T (18, 26). Based on this, R0
would be valued at 4.52 (SI Methods). This value is higher than
what we measure in the simulations because it is based on the
assumption of continuous transmission, whereas the simulations
exhibit discontinuous transmission attributable to weekends;
during that time, the school is closed and the chain of trans-
mission is effectively cut for 2 d. Finally, absentee data from the
school during the fall of 2009 (i.e., during the second wave of
H1N1 influenza in the northern hemisphere) are in good
agreement with simulation data generated by the SEIR model
running on the contact network (Fig. 4A).
A strong correlation exists between the size of an outbreak

caused by index case individual i and the strength of the node
representing individual i (r2 = 0.929). The correlation between
outbreak size and degree is substantially weaker (r2 = 0.525)
because at the high temporal resolution of the dataset, the de-
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gree contains many short-duration contacts whose impact on
epidemic spread is minimal. To estimate the sampling rate at
which degree has maximal predictive power, we systematically
subsampled our original dataset to yield lower resolution data-
sets. Fig. S2 shows that sampling as infrequently as every 100 min
would have resulted in the same predictive power for degree as
sampling every 20 s, whereas the maximum predictive power for
degree would have been attained at ∼20 min. At this sampling
rate, the 95% confidence intervals for the correlation between
degree and outbreak size and the correlation between strength
and outbreak size start to overlap (because of the high correla-

tion between degree and strength; Fig. S2, blue line). These
results suggest that high-resolution sampling of network prop-
erties such as the degree of nodes might be highly misleading for
prediction purposes if used in isolation (i.e., without the tem-
poral information that allows for weighting).
To mitigate epidemic spread, targeted immunization inter-

ventions or social distancing interventions aim to prevent disease
transmission from person to person. Finding the best immuniza-
tion strategy is of great interest if only incomplete immunization is
possible, as is often the case at the beginning of the spread of
a novel virus. In recent years, the idea of protecting individuals
based on their position in the contact network has received con-
siderable attention (11, 27, 28). Graph-based properties, such as
node degree and node betweenness centrality (29), have been
proposed to help identify target nodes for control strategies, such
as vaccination; however, because of the lack of empirical contact
data on closed networks relevant for the spread of influenza-like
diseases, such strategies could only be tested on purely theoretical
networks [or on approximations from other empirical social net-
works that did not measure CPIs directly (11)]. To understand the
effect of partial vaccination, we measured outbreak size for three
different levels of vaccination coverage (5%, 10%, and 20%) and
a number of different control strategies based on node degree,
node strength, betweenness centrality, closeness centrality, and
eigenvector centrality (so-called “graph-based strategies”). In
addition, we tested vaccination strategies that do not require
contact network data (random vaccination, preferential vaccina-
tion for teachers, and preferential vaccination for students; SI
Methods). To ensure robustness of the results to variation in
transmission probabilities, all simulations were tested with three
different transmission probabilities (Methods). Ten thousand
simulations for each combination of vaccination strategy, vacci-
nation coverage, and transmission probability with a random index
case per simulation were recorded (i.e., total of 810,000 simu-
lations) to assess the effect of vaccination. Fig. 4B shows which
strategies led to significantly (P < 0.05, two-sided Wilcoxon test)
different outcomes at all transmission probability values (results
separated by transmission probability are presented in Fig. S3). As
expected, all strategies managed to reduce the final size of the
epidemic significantly. Compared with the random strategy,
graph-based strategies had an effect only at higher vaccination
coverage. Graph-based strategies did not differ much in their ef-
ficacy; in general, strength-based strategies were the most effec-
tive. Overall, two main results emerge: (i) in the absence of
information on the contact network, all available strategies, in-
cluding random immunization, performed equally well and (ii) in
the presence of information on the contact network, high-
resolution data support a strength-based strategy, but there was
no significant difference among the graph-based strategies.

Discussion
In summary, we present high-resolution data from the CPI net-
work at aU.S. high school during a typical school day. Notably, the
month of the experiment (January) is associated with the second
highest percentage of influenza cases in the United States for the
1976–1977 through 2008–2009 influenza seasons (second only to
February). The data suggest that the network relevant for disease
transmission is best described as a small-world network with a very
homogeneous contact structure in which short repeated inter-
actions dominate. The low values of the coefficients of variation in
degree, strength, and number of interactions (Fig. 3) suggest that
the assumption of homogeneity in traditional disease models (21)
might be sufficiently realistic for simulating the spread of in-
fluenza-like diseases in communities like high schools. Further-
more, we do not find any “fat tails” in the contact distribution of
our dataset, corroborating the notion (9) that the current focus on
networks with such distributions is not warranted for infectious
disease spread within local communities.
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It is important to recognize the limitations of the data presented
here, particularly in light of the fact that transmission of influenza-
like diseases also occurs via other routes, for example, via contact
with contaminated surfaces (30). Moreover, different pathogens
as well as different strains of a particular pathogen might have
different minimum requirements (both spatial and temporal) that
need to be met for person-to-person transmission. At present, the
data capture the contact network during a single day only. This is
not an inherent shortcoming of the approach presented here,

however, and long-term studies in the future could address how the
large-scale structure of the contact network in a high school
changes over time. Data collection at different schools with dif-
ferent demographic compositions would be helpful in clarifying if
and how demographic compositions affect the properties of the
network relevant for disease transmission. Wireless sensor net-
work technology certainly allows further elucidation of the contact
networks not only at different schools but in households, hospitals,
workplaces, and other community settings.
With regard to immunization strategies, our simulation results

suggest that contact network data are necessary to design strate-
gies that are significantly more effective than random immuniza-
tion to minimize the number of cases at the school caused by
a single index case. Great care needs to be taken in interpreting
these results for various reasons. First, the limitations of the data as
discussed above mean that these results may not hold in other
settings, underlining the need for further empirical network
studies. Second, the simulations assume neither multiple intro-
ductions nor ongoing interactions of participants outside of the
school. To what extent these assumptions, particularly the latter,
are violated when a disease spreads through a community is un-
known and remains to be measured. Third, future work needs to
establish the robustness of the effect of vaccination strategies
against errors in the measurement of graph-based properties.
Fourth, and perhaps most importantly, a particular immunization
strategy may be optimal for reducing the number of cases in one
particular school but, at the same time, may not be optimal from
the perspective of an entire community. Immunization strategies
must also take into account medical, social, and ethical aspects
(31). Thus, although we believe that data of the kind reported here
can help to inform public health decisions, particularly as more
data become available in the future, it is clear that one cannot
derive public health recommendations at this stage directly from
this study alone. We note, however, that our findings support the
notion that graph-based immunization strategies could, in prin-
ciple, help to mitigate disease outbreaks (11, 28).

Methods
The mote deployment is described in detail in SI Methods.

Epidemic Simulations. To simulate the spread of an influenza-like disease, we
used an SEIR simulation model parameterized with data from influenza
outbreaks (12, 32, 33). In the following, we describe the model in detail.

Transmission occurs exclusively along the contacts of the graph as collected
at the school. Each individual (i.e., node of the network) can be in one of four
classes: susceptible, exposed, infectious, and recovered. Barring vaccination,
all individuals are initially susceptible (more information on vaccination is
presented below). At a random time step during the first week of the sim-
ulation, an individual is chosen as the index case and his or her status is set to
exposed. A simulation is stopped after the number of both exposed and
infectious individuals has gone back to 0 (i.e., all infected individuals have
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Fig. 4. (A) Absentee data (red) and data generated by the SEIR model (gray;
1,000 runs with R0 >1 shown). Gray lines show frequency of infectious
individuals, f(I); red lines show the combined frequency of students who
reported, or were diagnosed with, a fever and teachers who were absent
(gap in the line attributable to weekend). (B) Differences in effect of vac-
cination strategies. Colors represent vaccination coverage of 5% (orange),
10% (blue), and 20% (gray). A point at the intersection of strategy A and
strategy B indicated that between those strategies, there was a significant
difference (P < 0.05, two-sided Wilcoxon test) in the outbreak size at all
transmission probability values at the given vaccination coverage. A black
horizontal or vertical line points in the direction of the strategy that resulted
in smaller outbreak sizes. Because of the symmetry of the grid, data points
below the left bottom and top right diagonal line are not shown.
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recovered). Each time step represents 12 h and is divided into day and night.
Transmission can occur only during the day and only on weekdays (i.e., apart
from the initial infection of the index case, we do not consider any trans-
mission outside of the school; although this assumption will not hold in
reality, it allows us to focus exclusively on within-school transmission and to
analyze the spread of a disease starting from a single infected case).

Transmission of disease froman infectious to a susceptible individual occurs
with a probability of 0.003 per 20 s of contact (the interval between two
beacons). This value has been chosen because it approximates the time-de-
pendentattack rateobserved inanoutbreakof influenzaaboardacommercial
airliner (32). In particular, the probability of transmission per time step (12 h)
from an infectious individual to a susceptible individual is 1 − (1 − 0.003)w,
wherew is theweight of the contact edge (in CPRs).On infection, an individual
will move into the exposed class (infected but not infectious). After the in-
cubation period, an exposed individual will become symptomatic and move
into the infectious class. The incubation period distribution is modeled by
a right-shifted Weibull distribution with a fixed offset of half a day [power
parameter = 2.21, scale parameter = 1.10 (12)]. On the half day that the
individual becomes infectious, the duration of all contacts of the infectious
individual is reduced by 75%. This reduction ensures that if an individual
becomes symptomatic and starts to feel ill during a school day, social contacts
are reduced and the individual leaves the school or is dismissed from school
after a fewhours. In the following days, all contacts are reduced by 100%until
recovery (i.e., the individual stays at home). Once an individual is infectious,
recovery occurswith aprobability of 1−0.95tper time step,where t represents
thenumberof time steps spent in the infectious state [in linewithdata froman
outbreak of H1N1 at a New York City school (33)]. After 12 d in the infectious
class, an individual will recover if recovery has not occurred before that time.

Based on these simulation settings and the finding that the average
contact duration is 18.1 CPRs (Results), the transmissibility, T, as defined by
Newman (18) and Meyers et al. (26), is 1 − (1 − 0.003)18.1*0.25 = 0.0135.
Furthermore, based on the framework established by Newman (18) and
Meyers et al. (26), R0 can be calculated as R0 = T × <ke>, where the average
excess degree, <ke>, is <k

2>/ <k>− 1 = 334.76.
We assume that all exposed individuals developed symptoms. A high in-

cidence of asymptomatic spread may affect infectious disease dynamics (34),
but reports of asymptomatic individuals excreting high levels of influenza
virus are rare (35). In addition, a recent community-based study investigating
naturally acquired influenza virus infections found that only 14% of infec-
tions with detectable shedding at RT-PCR were asymptomatic and viral
shedding was low in these cases (36), suggesting that the asymptomatic
transmission plays a minor role. Similar patterns were observed for SARS-
CoV, another virus with the potential for rapid pandemic spread: Asymp-
tomatic cases were infrequent, and lack of transmission from asymptomatic
cases was observed in several countries with SARS outbreaks (37).

Vaccination. The efficacy of vaccination strategies was tested by simulation.
Vaccination occurs (if it occurs at all) before introduction of the disease by the
index case. Vaccinated individuals are moved directly into the recovering
class.We assume that the vaccine provides full protection during an epidemic.

Three vaccination strategies are implemented that do not require mea-
suring graph-based properties; these strategies are called “random,” “stu-
dents,” and “teachers.”
Random. Individuals are chosen randomly until vaccination coverage is
reached.

Students. Students only are chosen randomly until vaccination coverage
is reached.
Teachers. Teachers only are chosen randomly until vaccination coverage is
reached. If vaccination coverage is so high that all teachers get vaccinated
before the coverage is reached, the strategy continues as the student strategy
(see above) for the remaining vaccinations.

Five vaccination strategies are implemented that require measuring graph
properties: These strategies are called “degree,” “strength,” “betweenness,”
”closeness,” and “eigenvector.” In all cases, individuals are ranked according
to the specific graph property and chosen according to that ranking (in
descending order) until vaccination coverage is reached.
Degree. Degree is calculated as the number of contacts during the day
of measurement.
Strength. Strength is calculated as the total time exposed to others during the
day of measurement.
Betweenness. Betweenness centrality, CB(i), of individual i is calculated as

CBðiÞ ¼ ∑
s≠t≠i

σstðiÞ
σst

where s, t, and i are distinct individuals in the contact graph; σst is the total
number of shortest paths between nodes s and t; and σst(i) is the number of
those shortest paths that go through node i (29). The shortest path is cal-
culated using inverse weights.
Closeness. Closeness centrality, CC(i), of individual i is calculated as

CCðiÞ ¼ n− 1
∑
s≠i

dsi

where s and i are distinct individuals in the contact graph, dsi is the shortest
path between nodes s and i, and n is the number of individuals in the graph
(29). The shortest path is calculated using inverse weights.
Eigenvector. Calculation of eigenvector centrality is described by White and
Smyth (38) through application of the page-rank algorithm with jumping
probability 0. The measure captures the fraction of time that a random walk
would spend at a given vertex during an infinite amount of time.

Wetestedthreedifferent levelsofvaccinationcoverage:5%,10%,and20%.
These percentages apply to the entire population [i.e., a 10% vaccination
coverage means that 10% of the entire school population is vaccinated, in-
dependent of the particular vaccination strategy (except for the strategy
“none,” which means no vaccinations occur]. In addition to the default
transmission probability per CPR interval described above (i.e., 0.003), we
tested lower (0.002) and higher (0.0045) transmission probability values.
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Abstract 

Background  

Infectious disease outbreaks in communities can be controlled by early detection and effective 

prevention measures. Assessing the relative importance of each individual community member 

with respect to these two processes requires detailed knowledge about the underlying social 

contact network on which the disease can spread. However, mapping social contact networks is 

typically too resource-intensive to be a practical possibility for most communities and 

institutions.  

Methods  

Here, we describe a simple, low-cost method - called collocation ranking - to assess individual 

importance for early detection and targeted intervention strategies that are easily implementable 

in practice. The method is based on knowledge about individual collocation which is readily 

available in many community settings such as schools, offices, hospitals, and so on. We 

computationally validate our method in a school setting by comparing the outcome of the method 

against computational predictions based on outbreak simulations on an empirical high-resolution 

contact network. We compare collocation ranking to other methods for assessing the 

epidemiological importance of the members of a population. To this end, we select 

subpopulations of the school population by applying these assessment methods to the population 

and adding individuals to the subpopulation according to their individual rank. Then, we assess 

how suited these subpopulations are for early detection and targeted intervention strategies.  

Results  

Likelihood and timing of infection during an outbreak are important features for early detection 

and targeted intervention strategies. Subpopulations selected by the collocation ranking method 



show a substantially higher average infection probability and an earlier onset of symptoms than 

randomly selected subpopulations. Furthermore, these subpopulations selected by the collocation 

ranking method were close to the optimum. 

Conclusions  

Our results indicate that collocation ranking is a highly effective method to assess individual 

importance, providing critical low-cost information for the development of sentinel surveillance 

systems and prevention strategies. 

 

Keywords: Sentinel surveillance; prevention; social network; influenza; collocation; SIR model.
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Background 

Social network analysis has become an important tool to assess infectious disease spread in 

communities [1-3]. In a social network model of disease spread, the network ties between 

individuals are considered to be relevant for the transmission of the disease whose spread is 

modeled. For many infectious diseases, including some of the diseases with the greatest 

pandemic potential, such as influenza, disease transmission is assumed to require spatio-temporal 

proximity of individuals. Spatio-temporal proximity is typically approximated by network ties, 

where it is assumed that social contacts (family, friends, co-workers, and so on) capture the 

majority of potential disease transmission events.  

The predictive power of social network topology on the dynamics of infectious disease spread 

has been confirmed empirically [1,3-6]. It is well established that both high individual contact 

rates as well as a high dispersion in a population’s contact distribution results in increased 

disease transmission within the population [7-9]. In many host-pathogen systems, it is a minority 

of individuals that contributes the most to infectious disease spread [8]. In addition, the position 

of individuals in a social network has been shown to correlate well with the likelihood and 

timing of infectious disease onset [1,3,10]. 

These findings immediately suggest an important role for social network analysis in the 

development of sentinel surveillance systems and targeted mitigation strategies. Sentinel 

surveillance is most efficient when disease outbreaks can be detected as early as possible. 

Mitigation strategies such as targeted vaccination are most efficient when each unit of resource 

(for example, vaccination dose) leads to the maximal case count reduction possible. Combined, 

these two methods can significantly mitigate infectious disease spread and thus reduce the 

morbidity and mortality associated with the disease. 



Unfortunately, mapping social networks is very resource-intensive, and thus generally not a 

practical option in most communities. However, most communities do have information about 

the location of their members over time. For example, educational communities such as schools 

have detailed information about the location of their members in the form of rosters and 

schedules. From these readily available data sources, one can calculate the overall collocation 

time of each community member, that is, the cumulative time each individual is potentially 

exposed to other individuals. On a population-level, time-use surveys have been shown to be 

good proxies for contact data [11]. We suggest that also on a detailed community-level such a 

collocation measure can serve as a very good proxy indicator of the network measures that are 

associated with both increased infection likelihood and early infection during an outbreak. As a 

consequence, this method has the potential to be a simple, low-cost method to assess individual 

importance for early detection and targeted intervention strategies that are easily implementable 

in practice without the need to map social networks. 

In this paper, we test how well collocation ranking can identify subpopulations suited for early 

detection and targeted intervention strategies. We compare the performance of the collocation 

ranking method (as defined by two benchmarks) to the performance achieved by other, partly 

network-based, methods. We further compare its performance to randomly selected 

subpopulations and the best possible subpopulations according to the two benchmarks.  

 

Methods 

We challenge various indicators for selecting subpopulations for early detection and targeted 

intervention with computational influenza outbreak simulations that are based on empirical high-



resolution contact and location data collected with wireless sensor technology at a US high 

school.  

First, we describe the data that were used for our analyses. Then, we define two benchmarks 

according to which the proposed collocation ranking method and the other indicators are 

evaluated. Next, we describe all indicators that are tested in this paper. Finally, we describe the 

outbreak simulation model and how the performance tests were set up.  

Both the empirical data and the simulation model are described in detail elsewhere [12]. 

Therefore, both are only described briefly here. 

All simulations and analyses were coded in and executed by Python (Version 2.7.2, 32-bit, 

Enthought Python Distribution). Figures were created with R (Version 2.13.0) and the ggplot2 

library. 

Ethics statement 

The data collection was approved by the Stanford University Institutional Review Board on 24 

July 2009. Written informed consent was obtained from all participants. 

Contact and location data 

The data that we use in this paper were collected at a US high school during one school day with 

wireless sensor technology. A total of 789 individuals or 94% of the school population, including 

students, teachers, and staff, participated in the study. The participants wore small wireless 

sensors (so-called motes) that detect and log radio signals broadcast by other nearby motes. We 

refer to the motes that were worn by participants as mobile motes. Further, stationary motes were 

attached to fixed locations throughout the school campus to keep track of the participants’ 

locations. As a consequence, the dataset contains two types of records. Close proximity 

interactions (CPIs) are records that indicate two participating individuals standing face-to-face 



with a distance of less than three meters at a certain point in time. Location records are records 

that indicate the presence of an individual nearby a stationary mote (location information is at the 

level of rooms). A detailed description on how information and noise were separated in the data 

is provided in the supplementary material (see Additional file 1). Data were collected at time 

intervals of 20 seconds.  

Schedule data 

In many communities, full individual schedule data (that is, the schedule of each individual) is 

readily available to community health services. During an outbreak, this data could be used to 

calculate the collocation rank for all community members. For various reasons, it was not 

possible to obtain full individual schedule data from the school, but it was possible to obtain 

aggregated schedule data. We then reconstructed individual schedule data from a combination of 

the mote data and the aggregated schedule data. The aggregated schedule data file contains the 

following information about each class taught at the school during the mote deployment: (i) who 

taught the class, (ii) the room in which the class was taught, (iii) the period of the class, and (iv) 

the number of students who were signed up for the class. The aggregated schedule data 

combined with the high resolution location data allows us to reconstruct individual schedules 

with high fidelity. The algorithm for matching aggregated schedule and individual location data 

is further described in the supplementary material (see Additional file 1).  

Benchmarks 

The core idea is to identify simple indicators that allow the identification of subpopulations of 

the entire school population that are maximally relevant in prevention and surveillance efforts. 

Both prevention and surveillance efforts should target individuals who are more likely to become 

infected than others. In addition, these efforts should be targeted at individuals who become 



infected early during an outbreak, allowing for early detection of outbreaks (surveillance) and 

early response (prevention). 

We define two simple benchmarks to test the accuracy of any indicator to be evaluated:  

1. The first benchmark is the average probability of the individuals  of a subpopulation  

to become infected. We use an empirical probability that is defined as the ratio of the number 

of simulation runs in which individual in subpopulation became infected and the total 

number of simulation runs . Note that simulation runs in which  is the index case are ignored 

(see test setting section below). A subpopulation has been optimally identified if  is maximal.  

2. For the second benchmark, we calculate the ratio   i / Pi  for every individual  in 

subpopulation , where  is the average simulation time step at which the individual became 

symptomatic. Then, the second benchmark  is defined as the average of these ratios. The 

division by  is necessary to take into account that early detection of a symptomatic individual 

is more relevant when the infection probability of that individual is high. The time of the onset of 

symptoms has more practical relevance than the time of infection, because symptomatic cases 

can be identified more easily than pre- or asymptomatic carriers. A subpopulation has been 

optimally identified if  is minimal. 

Rank indicators 

Several indicators are evaluated with respect to their ability to select subpopulations with optimal 

benchmark results. Thus, a good indicator would select subpopulations that have high  values 

and low  values. The basic principle of subpopulation formation is the same for all indicators: 

the individuals are ranked according to their individual respective indicator value (from high to 

B
1

P
i i S

P
i

n i S

N i

B
1

i

S t

B
2

P
i

B
2

B
1

B
2

t P
i

i



low values). Then, subpopulations are formed by selecting individuals from high to low ranks 

until the target subpopulation size is reached. We use the following rank indicators: 

Presence 

The presence indicator measures the total time an individual attends classes according to the 

schedule, and it is defined as , where  is an index pointing to one of the seven 

periods of the surveyed high school day,  is the official duration of period , and  

if individual i had a scheduled class during period , and  if not.  

Collocation 

The collocation indicator measures the cumulative time each individual is potentially exposed to 

other individuals during classes, and it is defined as . Here,  denotes the 

number of students signed up for the class that individual i is taking during period , and  

is the official duration of period . If  has no class during that period, . The 

collocation indicator - like the presence indicator - is only based on schedule data. 

Degree 

We use the actor degree centrality  [13], which is one of the network indices that is 

frequently used in network epidemiology to identify the most important individuals in a 

transmission network [12,14-18]. The actor degree centrality of an individual  is defined as the 

number of contact partners of  - here determined by the presence of at least one CPI - during the 

measurement period.  

Degree (>10 minutes) 
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The difference between this indicator and the previous one is that only contacts of more than 10 

minutes of accumulated duration during the measurement period are considered. The cut-off of 

10 minutes was chosen arbitrarily, but a sensitivity analysis shows that the indicator’s 

performance changes only slightly when the cut-off is changed to 5, 15, or 20 minutes (see 

Additional file 1).  

Strength 

The strength of an individual  stands for the cumulative contact duration of , and it is defined 

as . Thereby,  is the set containing the entire school population except , and 

 stands for the accumulated contact duration of individuals  and . Strength is an 

enhancement of the degree concept and can be interpreted as a weighted degree [19]. 

There are other network measures which are frequently used to identify pivotal individuals in a 

social network, for instance closeness centrality or betweenness centrality. These measures, 

however, have been shown to be comparably good or even worse than the degree in indicating 

individuals who are important for disease spread [17,18]. For this reason we concentrate on the 

simpler, but still powerful, centrality indicators described above. 

Model of influenza spread 

We use an individual-based model of influenza spread to assess the importance of the members 

of the school population with respect to disease spread. The model is published and described in 

detail in [12], but briefly, we assume that the infection is introduced by one index case at the 

beginning of a simulation run and that all subsequent infections happen within the school 

population, that is, there are no further introductions from outside. The time step duration is half 

a day. The model is a susceptible, exposed, infectious, recovered (SEIR)-type model. The 

i i

w i , j

j J { i }

J { i} i

w i , j i j



probability to switch from the susceptible to the exposed state is , where is the 

accumulated contact time the susceptible individual has spent with infectious individuals while at 

school (in CPI records) [20]. The duration of the exposed state follows a Weibull distribution 

with an offset of half a day; the power parameter is 2.21, the scale parameter is 1.10 [21]. After 

that period in the exposed state, every individual will be in the infectious state for exactly one 

time step before turning into home confinement and, finally, recovering. To allow for the fact 

that the onset of influenza symptoms is typically sudden and that affected individuals will be 

dismissed quickly, we reduce the duration of contacts by 75% during the single time step at 

school.  

Test setting 

Each member of the school population could be the index case of an outbreak and introduce the 

infection from outside the school. Therefore, we initialize 100 independent runs for each member 

of the school population being the index case that introduces the infection. This results in a total 

of 78,900 simulation runs that build the basis of our analyses. 

For all simulation runs, we keep track of which individuals got infected and when they became 

symptomatic during the course of the simulation run. This allows us to calculate the two 

benchmarks defined above. 

 

Results 

In order to assess the performance of the collocation indicator, we selected subpopulations of 

various sizes on the basis of the collocation indicator and compared their benchmarks to 

randomly selected subpopulations, optimal subpopulations, and subpopulations selected on the 

basis of the other indicators described in the Methods section. An optimal subpopulation stands 
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for a subpopulation selected in such a way that it achieves the best possible benchmark value for 

the given population. 

First benchmark: average infection probability 

The subpopulations that were selected on the basis of the collocation indicator constantly show a 

substantially higher average infection probability  than randomly selected subpopulations of 

the same size (Figure 1a). Given a subpopulation of ten percent of the entire school population, 

collocation ranking resulted in 1.43 to 1.62 times better results than randomly composed 

subpopulations that were between the 10th and the 90th percentile. Given a subpopulation of 

twenty percent of the entire school population, collocation ranking resulted in 1.29 to 1.41 times 

better results than randomly composed subpopulations that were between the 10th and the 90th 

percentile.  

Most subpopulations selected on the basis of rank indicators achieved consistently better 

benchmark results than random subpopulations, and all of them outcompeted random 

composition over a large range of subpopulation sizes. The performance of subpopulations 

selected on the basis of the collocation indicator was better than the performance of 

subpopulations selected on the basis of the presence and the degree indicator, but worse than the 

performance of subpopulations selected on the basis of the degree (>10 minutes) and the strength 

indicator (Figure 1b). For subpopulations smaller than 40% of the entire population, those 

selected on the basis of the collocation indicator achieved benchmark values that were only about 

10% below the optimum.  

Second benchmark: ratio of average infection time and probability 

The qualitative picture for the second benchmark was very similar to that of the first benchmark. 

However, differences between the various subpopulations were more pronounced.  

B
1



For subpopulations that represent between 2% and 90% of the entire population, the 

subpopulation selected on the basis of the collocation indicator performed consistently 2.5 or 

more times better than the median of the random subpopulations. For almost the entire range of 

subpopulation sizes, the benchmarks of the subpopulation selected on the basis of the collocation 

indicator were at least twice as low as the benchmarks of 90% of the random subpopulations 

(Figure 2a).  

For small subpopulations up to approximately 22%, collocation ranking outcompeted ranking by 

degree. Further, collocation ranking was almost always better or as good as ranking by presence 

(Figure 2b).  

Further analyses 

Additional analyses, in particular how the role of members of the school population (that is, 

whether the individual is a student, a teacher, or a staff member) is related to individual 

importance, are provided in Additional file 1. 

 

Discussion 

Social networks have proven to be useful for understanding and predicting infectious disease 

dynamics. There is a discussion on how detailed network data must be in order to be useful in 

epidemiological applications [6,14,22]. However, even mapping low-detail social contact 

networks is typically too resource-intensive to be a practical possibility for most communities 

and institutions. What is needed instead are low-cost proxies for individual network properties 

that can serve as epidemiological predictors. Spatial distance measures, for example, have 

recently been found to be significant predictors of social ties (among other predictors) [23], and 

it is therefore reasonable to expect that spatial proxies can also serve as useful epidemiological 



predictors. The collocation ranking method presented here is based on spatio-temporal 

considerations, and our results suggest that it may effectively identify subpopulations suited for 

sentinel surveillance systems and prevention strategies. 

Current methods to identify subpopulations for sentinel surveillance systems and prevention 

strategies typically rely on demographic variables such as age (for example, children and young 

adults in influenza surveillance systems [24-26]) and geographic location (for example, 

administrative units in invasive meningococcal disease surveillance systems [27-29]). These 

methods work because there is sufficient variance of such demographic variables at the societal 

level. However, at the level of communities and institutions such as schools, there is often too 

little variance to make these methods applicable. Furthermore, because demographic variables 

are not direct proxies for transmission routes, they may fail to identify individuals with high 

transmission potential who fall outside of the targeted range of the demographic variable. In 

contrast, the collocation ranking indicator proposed here is a direct proxy of potential disease 

transmission events as given by the contact network. 

Random selection serves as a null model method in the absence of epidemiologically relevant 

information about a population. The collocation ranking method significantly outcompetes the 

random method. As expected, some network indicators, such as the strength, were able to 

outcompete the collocation ranking method to identify subpopulations for early detection or 

targeted intervention strategies. This is not surprising because strength is essentially a direct 

measure of exposure, and it can thus serve as an indicator that can identify subpopulations which 

are almost identical to the optimal subpopulation. Nevertheless, measuring strength is resource-

intensive, while collocation ranking is not. 



Our research is not without limitations. The first limitation is that we rely on widely used 

computational simulation models of disease spread, rather than validating our method in an 

empirical setting. Our simulation model is based on high-resolution contact network data [12] as 

well as established disease transmission parameters [20,21], but ideally, any benchmark would 

be based on empirical outbreak data instead of simulated data. However, infection transmission 

is a highly stochastic process, requiring multiple outbreaks for a robust evaluation of the 

collocation ranking method presented above.  

Limitations and uncertainties of our model are, in particular, the following: (i) There is still 

debate on the relative importance of the different potential pathways of influenza transmission 

[30-32]. Most models of influenza spread assume transmission by close contact, but there is the 

possibility that other transmission pathways are more important than currently thought. (ii) We 

model the spread between members of the school population during school hours, but we do not 

capture potentially infectious contacts between school members during their leisure time. (iii) 

We assumed that the probability of being an index case is homogeneous. In reality, this is most 

likely not the case. (iv) We also assumed that all individuals are fully susceptible. In reality, 

individuals differ in their serostatus and (partial) immunity is linked to patterns of previous 

exposure. (v) It might be that an ongoing epidemic changes the contact behavior not only of the 

symptomatic individuals, but also of the healthy ones who continue to attend school. Such 

potential behavior changes are not reflected in our model.  

Another limitation is that the data to test our method were collected in one school only. 

Moreover, the data covers only one school day. While the method worked very well in this 

setting, the generalizability to other settings remains to be established.  



Finally, we had to reconstruct individual schedules from aggregated schedules and mote data. 

Reconstructions may be incomplete (compare with Additional file 1), and the real course of a 

school day may differ from the scheduled sequence of classes. While it is important to recognize 

that we currently cannot conclusively validate our method, our simulation results indicate that 

the collocation method is an effective, low-cost tool that warrants further research. 

 

Conclusions 

Social networks have proven to be useful predictors of infectious disease outbreak dynamics. 

From a practical perspective, social network information can be highly valuable for the 

development of sentinel surveillance systems and prevention strategies because people’s 

positions within the network correlate with their likelihood and timing of infection during an 

outbreak. The disadvantage of network-based approaches is that they are highly resource-

intensive and, thus, can not be applied to every situation of interest. Hence, simple proxies, such 

as the collocation ranking method presented here, that fulfill the same purpose are needed.  

Subpopulations identified by the collocation ranking method are significantly better suited for 

sentinel surveillance systems and prevention strategies than randomly selected subpopulations. 

Some network-based ranking methods were slightly better for identifying such subpopulations 

than collocation ranking. The collocation ranking method, however, is a low-cost method that 

still manages to identify subpopulations that are very close to the optimum. The data requirement 

of the method is very low, and typically readily available in many community settings, such as 

schools, offices, hospitals, and so on in the form of rosters/schedules. 

Our results suggest that the collocation ranking method may effectively identify subpopulations 

suited for sentinel surveillance systems and prevention strategies. 
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Figure 1. Performance of collocation ranking: first benchmark. Subfigures 1a and 1b are 

based on the first benchmark, which is the average probability of individuals in a given 

subpopulation to become infected during an outbreak, . The abscissa shows the percentage of 

the population selected for prevention or surveillance efforts. The ordinate shows the ratio of the 

 of the collocation indicator and the  of any other indicator, that is, ordinate values >1 

indicate that the collocation indicator performs better than the other indicator it is compared to. 

Subfigure 1a compares the  value of the 10th, 25th, 50th, 75th, and 90th percentile of 100,000 

randomly selected subpopulations to the  of subpopulations selected by the collocation 

indiciator. Subfigure 1b compares  of all indicators defined in the Methods section, as well as 

the optimal  , to the   of the collocation indicator. 

 

Figure 2. Performance of collocation ranking: second benchmark. Subfigures 2a and 2b are 

based on the second benchmark. The abscissa shows the percentage of the population selected 

for prevention or surveillance efforts. The ordinate shows the ratio of the  of a given indicator 

and the  of the collocation indicator, that is, ordinate values >1 indicate that the collocation 

indicator performs better than the other indicator it is compared to. Subfigure 2a compares the 
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 value of the 10th, 25th, 50th, 75th, and 90th percentile of 100,000 randomly selected 

subpopulations to the  of subpopulations selected by the collocation indicator. Subfigure 2b 

compares  of all indicators defined in the Methods section, as well as the optimal , to the 

 of the collocation indicator. 

 

Additional files 

Additional file 1 

Title: Supplementary information.  

Description: This additional file contains further information on (i) the data collection, (ii) how 

the locations of study participants were derived from the data, and (iii) how the individual 

schedules of students and teachers were reconstructed. The file further provides supplementary 

analyses which are not included in the main document. In particular, it contains figures that show 

(i) how well the five indicators define subpopulations according to a third benchmark (the 

average time to the onset of symptoms), (ii) how sensitive the outcome of the degree indicator 

reacts to various contact duration cut-offs, (iii) how predictive the role of an individual is for the 

likelihood and timing of infection, (iv) what the relationship between the five indicators is, and 

(v) how well the collocation indicator captures the number of infections that are induced by a 

certain index case. 
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SUMMARY

The analysis of contact networks plays a major role to understanding the dynamics of disease

spread. Empirical contact data is often collected using contact diaries. Such studies rely on

self-reported perceptions of contacts, and arrangements for validation are usually not made.

Our study was based on a complete network study design that allowed for the analysis of

reporting accuracy in contact diary studies. We collected contact data of the employees of three

research groups over a period of 1 work week. We found that more than one third of all reported

contacts were only reported by one out of the two involved contact partners. Non-reporting is

most frequent in cases of short, non-intense contact. We estimated that the probability of

forgetting a contact of f5 min duration is greater than 50%. Furthermore, the number of

forgotten contacts appears to be proportional to the total number of contacts.

Key words : Contact diary, direct transmission, epidemiology, networks, respiratory infections.

INTRODUCTION

The topology of contacts in host organisms is known

to be an important influencing factor in infectious

disease dynamics. It has been argued theoretically

that highly connected individuals play a pivotal role

in disease spread and that they have a strong impact

on both individual risks of infection as well as spread

dynamics at the level of entire populations [1–3].

Furthermore, it has been shown that both the clus-

tering of contact partners and repeated contact with

the same person can slow down an outbreak compared

to the dynamics of an otherwise identical random

mixing model [4, 5].

Empirical data on host-to-host contacts is needed

to complement the theoretical knowledge concerning

the importance of network topology for infectious

disease dynamics. Methods have been developed

to measure potentially contagious contacts in real-

world settings. Currently, the dominant approach for

measuring epidemiologically relevant contact data is

contact diaries [6–12]. Empirical research on poten-

tially contagious contacts, particularly the highly

cited study by Mossong et al. [8], has influenced the

discussion on the patterns and risk factors of disease

spread and has informed infectious disease modelling

[e.g. 13]. In addition, various studies have shown that

empirical contact data can successfully be applied in

epidemiological models to replicate serological data

[14–16].

Despite the increasing use of diary-based contact

data for understanding and explaining infectious dis-

ease dynamics, few studies have addressed the quality
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and appropriateness of this methodological approach.

One study compared retrospective and prospective

study designs and found ‘only minor differences in the

number of contacts, with on average more contacts

reported in the prospective survey’ [7, p. 133].

Another study compared a web-based mode of data

collection with a diary-based one and concluded that

the diary-based approach is less demanding and better

suited for collecting detailed data than the web-based

approach [9]. A similar result was reported in a study

that compared paper-based diaries with data collec-

tion via personal digital assistants (PDAs) [10]. Here,

the classical diaries were also perceived to be easier to

use. However, there is still a lack of research that aims

to measure errors and biases related to the diary ap-

proach directly, and not only the differences between

variations of the same method.

The goal of our research was to develop a study

design that allows the measuring of reporting errors

and biases related to contact diaries in a more

encompassing and complete manner than previous

studies. This paper provides first answers to the

questions of (i) how important measurement errors

related to the diary method are, (ii) how reporting

errors are related to the duration of a contact, and

(iii) how reporting errors are related to the total

number of different contact partners during a day.

Further, we analysed whether the participants showed

fatigue during the later study days. We focused

solely on contacts that are relevant for the spread of

pathogens that are transmitted via direct, non-sexual

contact between hosts.

METHODS

Study design and data collection

Typically, diary-based studies are designed as so-

called egocentric network studies. That means, the

participants are chosen randomly, or using any other

appropriate sampling scheme, typically from a large

population; the participants (egos) report infor-

mation about their contact partners (alters), but these

alters are not usually participants in the study. Thus,

it is not possible to link up the participants of an

egocentric network study with each other in order to

achieve a complete network structure. Another

drawback of the purely egocentric network design is

that there are limited possibilities for validating the

answers of the participants (e.g. by utilizing the sym-

metry condition for age-structured contact matrices,

as done by Wallinga et al. [16]). Consequently, the

participants’ answers are usually taken for granted.

To overcome the methodological limitations of

egocentric network studies and to be able to give

answers to the posed research questions, we con-

ducted an empirical network study with a complete

network design (i.e. the alters of an ego are also par-

ticipants in the study, and they can be linked). Our

target population consisted of the employees of three

research groups belonging to a single institute at ETH

Zurich. In total, 50 employees agreed to participate

and actually participated in our study. The data col-

lection started on Monday, 17 May 2010, and ended

on Friday, 21 May 2010.

The participants of our study were asked to report

only potentially contagious contacts they had with

other participants of this study. A potentially con-

tagious contact was defined as (i) a conversation held

at <2 m distance and with more than ten words

spoken, or as (ii) any sort of physical contact with a

person. When a contact event in keeping with this

definition occurred with any other participant of the

study, both involved participants were asked to note

the respective alter’s name in their diaries and an es-

timation of the total time of contact during the entire

day (in 5-min intervals).

All participants were asked to complete their diaries

independently and not to communicate with the other

participants about the contents. Thus, if all partici-

pants perceived and recalled all contacts correctly,

there would be a mirror-inverted – but otherwise

totally identical – match for every reported contact

in the database. As a consequence, our study design

allows investigation of the accuracy with which con-

tact diaries measure potentially contagious contacts,

because every deviation from the aforementioned

ideal indicates a reporting error.

Analyses of errors and biases

Although the chosen study design allows the inves-

tigation of reporting errors in contact diary studies,

even this design results in unidentified contacts

whenever both involved participants do not report a

common contact that actually took place. However,

with few assumptions it is possible to approximate the

number of completely unreported contacts as well as

the probability of reporting a contact or of forgetting

to report a contact in a particular setting. In the

following text we present a mathematical approach

for doing so, and describe how we assess the

2 T. Smieszek and others



uncertainty of these approximations by means of

bootstrapping.

The probability of forgetting to report a contact

most likely depends on many factors, such as the

duration and the intensity of the contact, the traits

and the intra-individual variation of the motivation

of the involved participant, as well as the context

in which the contact takes place. Controlling and

investigating all of these factors requires large data-

sets and complex study designs, which makes it diffi-

cult to convince target groups to participate. Thus,

we concentrate on one of the supposedly most in-

fluential factors, i.e. contact duration, and analyse

how reporting behaviour depends on a contact’s

duration.

We introduce the following simplifying assump-

tions and conventions as a prerequisite for approxi-

mating the probability of reporting a contact of a

certain duration, P, as well as the number of com-

pletely unreported contacts: (i) the recall bias depends

only on the duration of the contact and not on the

characteristics of the involved participants or the

context ; (ii) the reports of the participants are sto-

chastically independent ; (iii) in any matching pair of

contact reports, the duration with the higher value is

assumed to be the true duration; (iv) contacts can be

forgotten, but no contacts are reported that did not

occur in reality.

Under these assumptions, the problem can be rep-

resented by a unit square (see Fig. 1) for all four

duration categories. In this unit square, N1 is the

number of contacts with the duration of interest that

were reported by both participants. N2 is the number

of contacts reported by participant 1, but not by

participant 2. N3 is the number of contacts reported

by participant 2, but not by participant 1. We

assumed here that all participants report contacts of a

certain duration with the same probability [assump-

tion (i)]. Accordingly, N2 and N3 can be derived from

the total number of contacts reported by just one

participant, N2+3, by using the relation N2+3=
2N2=2N3. X is the unknown number of contacts that

were reported neither by participant 1 nor by partici-

pant 2. Due to assumptions (i) and (ii), the probability

of reporting a contact, P, is defined as P=N1/

(N1+N2)=N1/(N1+N3) and the probability of for-

getting to report a contact is given by the comp-

lementary probability Q=1–P.

We assessed the uncertainty of our approximations

by bootstrapping. To this end, 1000 resamples were

constructed from the original sample and the prob-

abilities P and Q were calculated for each of these

resamples. Therefore, for all resampled participants,

we added up (i) the numbers of contacts reported

mutually by all egos and their alters, as well as (ii) the

numbers of contacts that were only reported by the

alters. Then, P is defined as the sum of all mutually

reported contacts divided by the total of both sums.

We used the mean, the 0.025 quantile (referred to as

lower quantile) and the 0.975 quantile (referred to as

upper quantile) as indices for describing the distri-

bution and uncertainty of our approximations.

Statistical relationships between different variables

were analysed with standard statistical tools such as

the x2 test and linear regression analysis.

RESULTS

Descriptive characterization of the contact data

A total of 623 instances of contact were reported: 405

(65.0%) of which were reported by both involved

participants and 218 (35.0%) were reported by only

one participant and, thus, had no match (a list of all

reported contacts is provided in the Supplementary

online material, contact_data.csv). The cumulative

distribution of contact duration is as follows: for

31.1% of all individual contact reports, a duration of

f5 minwas listed; for 51.6%of reports,f15 minwas
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Fig. 1. Unit square representation of all possible combi-
nations of reporting behaviour. P is the probability of
reporting a specific contact (assumed to be equal for all

participants). Q is the probability of not reporting the con-
tact. N1 is the number of contacts that were reported by
both involved participants. N2 and N3 stand for the those
contacts that were reported only by one participant. X is

the number of contacts that were reported by none of the
involved participants.
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listed; for 69.2%, f30 min; for 75.4%, f45 min;

and for 87.1%, f1 h. The longest reported contact

duration was 8 h. Most (90.0%) of all valid reports

asserted that the respective contact with a certain alter

was only conversational. Only 10.0% of all individual

contact reports included physical contact.

Congruence between contact reports

For every matching pair of reported contacts, Table 1

shows whether or not the respective estimates of the

contact duration were in accord with one another.

For Table 1, we recoded the duration estimates of the

participants into the time categories used by Mossong

et al. [8], Mikolajczyk et al. [6], Horby et al. [12], and

Smieszek [11]. In this table, the higher duration esti-

mate (columns) was cross-tabulated against the lower

duration estimate (rows). In the case of contacts that

were only reported by one contact partner, we took

the existing duration estimate as the higher estimate

and introduced missing second reports of contact as

the lowest category for the lower duration estimate.

When analysing the correspondence of the duration

categories of all matching pairs of contact reports, we

see that not only 57.8% of all reports were recoded

into the same duration category and that 33.5% of all

pairs were allocated to adjacent duration categories,

but also that 8.8% differed by two or more time cat-

egories.

Table 2 shows a cross-tabulation of the kinds

of contact for matching pairs of reported contacts.

We classified contact events including physical

contact as more intense than purely conversational

contacts – regardless of the contact’s duration. Table 3

has the same layout as Table 1; however, it includes

only those contacts that were reported, at least by one

of the involved participants, to have included physical

contact. As the number of reports including physical

contact is very low, we decided not to further analyse

the impact of the reported kind of contact on the

reporting behaviour.

Reporting behaviour by duration category

The descriptive data shown in Table 1 suggests that

problems recalling contacts occur more often in the

case of short encounters than in the case of long-lasting

interactions. This is further confirmed by the results

of a x2 test for independence between contact duration

(four categories as defined in Table 1) and reporting

Table 1. Cross-tabulation of pairs of duration estimates

Reported duration :
lower value*

Reported duration: higher value

1–5 min 6–15 min 16–60 min 61–480 min Total count

Not valid# 0 0 3 2 5+4$

Not reported 123 (57.5%) 39 (18.2%) 43 (20.1%) 9 (4.2%) 214 (100.0%)
(67.6%) (32.0%) (20.1%) (9.4%) (34.9%)

1–5 min 59 (43.7%) 52 (38.5%) 18 (13.3%) 6 (4.4%) 135 (100.0%)
(32.4%) (42.6%) (8.4%) (6.3%) (22.0%)

6–15 min 31 (35.6%) 45 (51.7%) 11 (12.6%) 87 (100.0%)
(25.4%) (21.0%) (11.5%) (14.2%)

16–60 min 108 (74.5%) 37 (25.5%) 145 (100.0%)
(50.5%) (38.5%) (23.6%)

61–480 min 33 (100.0%) 33 (100.0%)
(34.4%) (5.4%)

Total count 182 (29.6%) 122 (19.9%) 214 (34.9%) 96 (15.6%) 614 (100.0%)
(100.0%) (100.0%) (100.0%) (100.0%) (100.0%)

* For every contact that was reported in this study, there is information regarding the existence and duration of this
respective contact from two participants. This table shows a cross-tabulation of the higher contact duration estimate vs. the
lower duration estimate of every reported contact. If just one participant reported the contact, then the lower value is set to
‘not reported’.

# ‘Not valid’ indicates that the contact was reported, but no information or not-interpretable information about the
duration was provided by one participant.
$ There were four contacts that were reported only by one involved participant, but without information on the duration.
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behaviour (contact reports by both contact partners

vs. just by one contact partner), which rejects the null

hypothesis that there is no relationship between these

two variables with x2(3)=134.3 (P<0.001).

According to our calculations, the probability P of

reporting a contact is 49.0% [bootstrapping inter-

quantile interval (BIQI) 39.8–58.3] if contact duration

is reported to be between 1 and 5 min; 81.0%

Table 2. Cross-tabulation of pairs of reports on kind of contact

Kind of contact :

less intense*

Kind of contact : more intense

Only

conversational

Including

physical

Total

count

Not valid# 50 2 52+11$

Not reported 192 (92.8%) 15 (7.2%) 207 (100.0%)
(39.2%) (21.4%) (37.0%)

Only conversational 298 (90.9%) 30 (9.1%) 328 (100.0%)
(60.8%) (42.9%) (58.6%)

Including physical 25 (100.0%) 25 (100.0%)
(35.7%) (4.5%)

Total count 490 (87.5%) 70 (12.5%) 560 (100.0%)
(100.0%) (100.0%) (100.0%)

* This table shows a cross-tabulation of the more intense contact report vs. the less
intense report. If just one participant reported the contact, then the lower value is

set to ‘not reported’.
# ‘Not valid’ indicates that the contact was reported, but no information or not-
interpretable information about the intensity of the contact was provided by at least

one involved participant.
$ There were 11 contacts that were reported by only one participant, but without
information on the intensity of the contact.

Table 3. Cross-tabulation of pairs of duration estimates (only events including physical contact)

Reported duration:
lower value*

Reported duration: higher value

1–5 min 6–15 min 16–60 min 61–480 min Total count

Not valid 0 0 0 0 0

Not reported 8 (53.3%) 1 (6.7%) 5 (33.3%) 1 (6.7%) 15 (100.0%)
(72.7%) (7.1%) (20.8%) (4.3%) (20.8%)

1–5 min 3 (14.3%) 10 (47.6%) 5 (23.8%) 3 (14.3%) 21 (100.0%)
(27.3%) (71.4%) (20.8%) (13.0%) (29.2%)

6–15 min 3 (37.5%) 3 (37.5%) 2 (25.0%) 8 (100.0%)
(21.4%) (12.5%) (8.7%) (11.1%)

16–60 min 11 (61.1%) 7 (38.9%) 18 (100.0%)
(45.8%) (30.4%) (25.0%)

61–480 min 10 (100.0%) 10 (100.0%)
(43.5%) (13.9%)

Total count 11 (15.3%) 14 (19.4%) 24 (33.3%) 23 (31.9%) 72 (100.0%)
(100.0%) (100.0%) (100.0%) (100.0%) (100.0%)

* This table shows a cross-tabulation of the higher contact duration estimate vs. the lower duration estimate of every

reported contact, but only those contact reports are included for which at least one participant stated that physical contact
took place. If just one participant reported the contact, then the lower value is set to ‘not reported’.
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(BIQI 75.4–88.8) for 6–15 min; 89.0% (BIQI

84.6–93.1) for 16–60 min; and 95.2% (BIQI

92.0–97.9) for contacts >1 h. Thus, we expected that

more than one quarter of contacts lasting f5 min

were not reported at all, and less than 4% of contacts

lasting between 6–15 min (Supplementary online

material, section 1).

Self-reported vs. total number of contacts

We further analysed the relationship between the total

number of contact partners attributed to a participant

during the course of the study week (i.e. the number of

set elements in the union of the contacts reported by

an ego or its alters ; N1+N2+N3 in Fig. 1) and the

actual number of contact partners reported by this

participant (N1+N2). The relationship can be well

described with a linear model : a linear regression

analysis with the total reported number of contact

partners as the independent variable, the self-reported

number of contact partners as the dependent variable,

and a forced intercept of zero (i.e. the regression line

had to go through the origin) resulted in a slope of

0.83 with an explained variance R2=97.7 (the re-

gression diagnostics are shown in the Supplementary

online material, section 3).

Fatigue effects

Figure 2 shows the mean, the lower and the upper

quantile for the probabilities of reporting a contact,

P, calculated separately for all four duration cat-

egories and for all 5 days of the working week by

means of bootstrapping. A decline in the reporting

accuracy over time can be caused by fatigue. In the

case of short contacts (1–5 min), the average P is

between 50% and 60% on Monday and Tuesday; it

drops below 40% on Wednesday and Thursday;

however, the highest average P is 76.7% on Friday. In

the case of all other duration categories, there appears

to be a trend that P declines over the course of the

week.

DISCUSSION

Interpretation of the results

On the basis of our analyses and the feedback we

received from our participants, we interpret and dis-

cuss the results as follows:

(1) The overall level of reporting errors using the

diary approach is rather high. More than one

third of all reported contacts were only reported
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Fig. 2. Mean (grey bars), and upper and lower quantiles (whiskers) of the probabilities of reporting a contact by day of the

week (calculated by bootstrapping). Indices for contacts of duration of (a) f5 min; (b) 6–15 min; (c) 16–60 min; (d) >1 h.
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by one participant. While our study design allows

us to reconstruct those – presumably forgotten –

contacts of an ego which are reported by the alter,

in the common egocentric study design, this

information is lost.

(2) We found the number of contact partners re-

ported by a certain ego (N1+N2 in Fig. 1) to be

approximately proportionally related to its total

reported number of contact partners (N1+N2+
N3). This finding is in accord with other research

on recall bias in network research [7, 17, 18] and

with our other datasets (T. Smieszek, J. Maag

and L. Muggler unpublished findings). That

means that there is higher underreporting for

highly connected individuals than for rather iso-

lated individuals. While for some research ques-

tions and methodologies this bias might be

unproblematical, other findings might be highly

affected by it. For instance, Mikolajczyk &

Kretzschmar [7] argue that for models based

purely on the relative average contact frequency

differences between age groups, this bias is irrel-

evant (see discussion on p. 133 of their paper).

However, their argument is only correct if age is

not correlated with other predictors for reporting

errors, such as the duration of the contacts.

(3) It is likely that the proportional relationship be-

tween the total and the self-reported number of

contacts we found only holds true for a limited

range of contact partners. The maximum number

of contact partners at work during one day re-

ported in this study was 16. It is plausible to as-

sume in cases of much higher contact numbers

(e.g. from a train conductor or flight attendant),

that individuals would either deny their partici-

pation or would report disproportionally fewer

contact partners. Furthermore, there is evidence

that the proportion of short and non-intense

contacts increases with the total number of con-

tact partners [11]. If highly connected individuals

show disproportionately high numbers of short

contacts, they are also likely to particularly suffer

from difficulty recalling the contacts they had.

(4) The underreporting of contacts in diary-based

datasets is highly correlated with the duration of a

certain contact. We estimate that the probability

of forgetting a contact that lasts f5 min is more

than 50%. In contrast, contacts that last >1 h

have an estimated probability of about 5% of

going unreported. This finding, that deficient

recall depends on measures of contact intensity,

is intuitively plausible : short encounters are,

in many cases, accidental and of rather low im-

portance for the involved individuals. Humans

tend to remember events that have a high

emotional or resource involvement better than

they do short and unimportant occurrences. This

systematic bias might particularly affect research

that builds upon intensity-differentiated contact

data [e.g. 11].

(5) Finally, in longitudinal studies like ours, fatigue

effects might occur and can be a relevant influence

factor on the number and kind of reporting

errors. McCaw et al. searched for fatigue effects in

their contact data with two different analyses :

they found no evidence that the sequence of the

different modes of data collection influenced the

reporting quality, but within a particular mode

the number of reported contacts declined with

time [10]. It is difficult to interpret our data with

respect to fatigue effects as – due to the study

design – it is inherently impossible to distinguish

the effects of the specific peculiarities of a certain

study day from fatigue: it seems plausible to us

that the pronounced fall in reporting accuracy

on Wednesday was caused by a particularly

strenuous workload for one research group on

that day, while the fact that many study partici-

pants work at home on Fridays might explain that

day’s above-average accuracy in reporting con-

tacts lasting between 1 and 5 min. Considering

that it was not possible to control for the impact

of the particular study day, the decline of the

probabilities towards the end of the week still

suggests that there might be a slight fatigue effect.

Limitations of the study

Caution should be exercised when generalizing our

findings because they are based on a small, specific

group of participants (academically trained people)

within a specific setting (scientists working for a uni-

versity). Although the office setting found in a uni-

versity is typical of many professions, the results of

an analogous study with other participants and

another setting might differ. Although we deem it

plausible that the general effects found in this study

are also true for other groups, more studies on dif-

ferent groups are needed to achieve a more robust

picture on the errors in diary-based contact data.

Furthermore, our data did not allow us to

analyse and to control for all potentially relevant
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determinants of reporting behaviour. We assumed,

for instance, that participants in a contact study do

not differ in their reporting probabilities. In reality,

participants in such studies differ in their motivation

as well as in their cognitive abilities. In principle, it

is possible to calculate the individual probabilities

of reporting a contact by applying the unit square

(Fig. 1) to all possible combinations of individuals

(Supplementary online material, section 2). However,

the theoretical maximum of reported contacts per pair

of participants is specified by the number of study

days, because the usual contact definition relies on

the accumulated time of interaction during an entire

day. In our study, there are at maximum five contact

reports per pair of individuals. On one hand, such low

numbers do not allow robust estimates of P1 and P2.

On the other hand, it is not feasible to conduct

longitudinal contact diary studies that last much

longer, because in that case many people would refuse

to participate.

We believe that most unmatched contact reports

are the result of underreporting. In principle, it is also

possible that contacts are reported that have either

not occurred or that do not fall under the given defi-

nition of a potentially contagious contact. Some par-

ticipants mentioned difficulties in deciding whether

a certain interaction occurred at a distance of less

than or more than 2 m. They mentioned particular

difficulties with accurately reporting interactions that

took place during meetings or social gatherings. It is

further possible that participants of such a study do

not understand the contact definition correctly, which

also might result in over- or underreporting of

contacts.

CONCLUSION

To conclude, it can be stated that diary-based contact

data is more appropriate for certain types of analyses

and for certain host–pathogen systems than it is

for others. The contact diary approach is probably

problematical for detailed investigations of the spread

dynamics of highly contagious diseases (e.g. typical

childhood diseases such as Bordetella pertussis). In the

case of such host–pathogen systems, even minor con-

tact is sufficient to transmit infection. Since such

contacts are particularly affected by the described

biases, it is likely that a large proportion of important

contact information is missing in diary-based datasets.

The opposite is true for host–pathogen systems

in which transmission takes place through long and

intense interaction (e.g. Neisseria meningitidis or

Staphylococcus aureus) and which often achieve only

low to medium basic reproduction numbers. Here, the

contact topology greatly influences spread dynamics

[4] and, at the same time, contact diary-based data is

likely to be more accurate than in the case of highly

contagious infections.

We only recommend applying the contact diary

method either when the planned analyses are robust

against the expected reporting errors and biases,

or when the relevant contacts are so intense that the

expected level of reporting accuracy is sufficient.

When possible, diary-based approaches should be

complemented with other approaches, like measure-

ments made with wearable sensor badges that pre-

cisely record close spatial co-location [19–21]. Such

complementary measurements allow data cross-

validation and provide more robust insights into a

system’s contact topology.

NOTE

Supplementary material accompanies this paper

on the Journal’s website (http://journals.cambridge.

org/hyg).
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5. Szendrói B, Csányi G. Polynomial epidemics and

clustering in contact networks. Proceedings of the Royal

Society of London, Series B: Biological Science 2004;
271 : S364–S366.

6. Mikolajczyk RT, et al. Social contacts of school chil-

dren and the transmission of respiratory-spread patho-
gens. Epidemiology and Infection 2008; 136 : 813–822.

7. Mikolajczyk RT, Kretzschmar M. Collecting social

contact data in the context of disease transmission :
prospective and retrospective study designs. Social
Networks 2008; 30 : 127–135.

8. Mossong J, et al. Social contacts and mixing patterns

relevant to the spread of infectious diseases. PLoS
Medicine 2008; 5 : e74.

9. Beutels P, et al. Social mixing patterns for transmission

models of close contact infections : exploring self-
evaluation and diary-based data collection through a
web-based interface. Epidemiology and Infection 2006;

134 : 1158–1166.
10. McCaw JM, et al. Comparison of three methods

for ascertainment of contact information relevant

to respiratory pathogen transmission in encounter
networks. BMC Infectious Diseases 2010; 10 : 166.

11. Smieszek T. A mechanistic model of infection: why
duration and intensity of contacts should be included in

models of disease spread. Theoretical Biology and
Medical Modelling 2009; 6 : 25.

12. Horby P, et al. Social contact patterns in Vietnam and
implications for the control of infectious diseases. PLoS

One 2011; 6 : e16965.
13. Smieszek T, et al. Reconstructing the 2003/2004 H3N2

influenza epidemic in Switzerland with a spatially ex-

plicit, individual-based model. BMC Infectious Diseases
2011; 11 : 115.

14. Goeyvaerts N, et al. Estimating infectious disease para-
meters from data on social contacts and serological

status. Journal of the Royal Statistical Society : Series C
(Applied Statistics) 2010; 59 : 255–277.

15. Kretzschmar M, Teunis PFM, Pebody RG.

Incidence and reproduction numbers of Pertussis :
estimates from serological and social contact data
in five European countries. PLoS Medicine 2010; 7 :

e1000291.
16. Wallinga J, Teunis PFM, Kretzschmar M. Using

data on social contacts to estimate age-specific trans-

mission parameters for respiratory-spread infectious
agents. American Journal of Epidemiology 2006; 164 :
936–944.

17. Brewer DD, Webster CM. Forgetting of friends and its

effect on measuring friendship networks. Social
Networks 1999; 21 : 361–373.

18. Brewer DD, Garrett SB, Kulasingam S. Forgetting as a

cause of incomplete reporting of sexual and drug injec-
tion partners. Sexually Transmitted Diseases 1999; 26 :
166–176.

19. Salathé M, et al. A high-resolution human contact net-
work for infectious disease transmission. Proceedings of
the National Academy of Sciences USA 2010; 107 :

22020–22025.
20. Cattuto C, et al. Dynamics of person-to-person inter-

actions from distributed RFID sensor networks. PLoS
One 2010; 5 : e11596.

21. Pentland A. Automatic mapping and modeling of
human networks. Physica A 2007; 378 : 59–67.

Errors and biases in contact diaries 9



This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted
PDF and full text (HTML) versions will be made available soon.

A practical method to target individuals for outbreak detection and control

BMC Medicine 2013, 11:36 doi:10.1186/1741-7015-11-36

Gerardo Chowell (gchowell@asu.edu)
Cecile Viboud (viboudc@mail.nih.gov)

ISSN 1741-7015

Article type Commentary

Submission date 30 January 2013

Acceptance date 30 January 2013

Publication date 12 February 2013

Article URL http://www.biomedcentral.com/1741-7015/11/36

Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and
distributed freely for any purposes (see copyright notice below).

Articles in BMC journals are listed in PubMed and archived at PubMed Central.

For information about publishing your research in BMC journals or any BioMed Central journal, go to

http://www.biomedcentral.com/info/authors/

BMC Medicine

© 2013 Chowell and Viboud
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

mailto:gchowell@asu.edu
mailto:viboudc@mail.nih.gov
http://www.biomedcentral.com/1741-7015/11/36
http://www.biomedcentral.com/info/authors/
http://creativecommons.org/licenses/by/2.0


A practical method to target individuals for outbreak detection and control 

 

Gerardo Chowell1,2* and Cécile Viboud2 

 

1Mathematical and Computational Modeling Sciences Center, School of Human Evolution 

and Social Change, Arizona State University, Tempe, AZ, USA 

2Division of International Epidemiology and Population Studies, Fogarty International 

Center, National Institutes of Health, Bethesda, MD, USA 

 

*Corresponding author 

 

Email addresses: 

GC: gchowell@asu.edu 

CV: viboudc@mail.nih.gov 



Abstract 

Identification of individuals or subpopulations that contribute the most to disease 

transmission is key to target surveillance and control efforts. In a recent study in BMC 

Medicine, Smieszek and Salathé introduced a novel method based on readily available 

information about spatial proximity in high schools, to help identify individuals at higher risk 

of infection and those more likely to be infected early in the outbreak. By combining 

simulation models for influenza transmission with high-resolution data on school contact 

patterns, the authors showed that their proximity method compares favorably to more 

sophisticated methods using detailed contact tracing information. The proximity method is 

simple and promising, but further research is warranted to confront this method against real 

influenza outbreak data, and to assess the generalizability of the approach to other important 

transmission units, such as work, households, and transportation systems. 

See related research article here http://www.biomedcentral.com/1741-7015/11/35  

Keywords: contact network; hotspot; dynamic network; contact pattern; wireless sensing 
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Background 

The transmission potential of an infectious disease is directly related to the characteristics of 

the infectious agent, its host population and the local environment [1]. The contribution of 

these factors can be encapsulated in a single parameter that is key for disease control, namely, 

the ‘reproduction number’, which quantifies the average number of secondary cases 

generated by an infectious individual during the early epidemic phase [1]. Identification of 

individuals or subpopulations associated with high transmission potential is particularly 

useful to guide surveillance and control strategies, especially when resources are limited [2]. 

Understanding the complexity of dynamic human interactions and contact networks is 

crucial to identifying hotspots of disease transmission during an outbreak [3]. The dynamic 

social contact networks relevant for disease spread depends on a number of factors, including 

individual host characteristics (e.g, age, prior immunity, number of contacts), pathogen 

characteristics (transmission mode), characteristics of the space in which individuals interact 

(for example, confined versus open setting, room capacity), and the duration and proximity of 

human interactions.  

Recent technological advances in miniature wireless sensing devices have allowed 

unobtrusive and unsupervised quantification of the dynamic network of human interactions in 

various settings, including schools [4-6], conferences [7], and hospitals [8]. In particular, 

these innovative technologies have increased our understanding of face-to-face contact 

patterns relevant for the spread of rapidly transmitted infectious agents [4, 9]. Given the large 

amount of costly information captured by these devices, there is active debate on the 

minimum level of data that is required to capture the essence of disease transmission and to 

be sufficient to inform disease control [7, 10].  

Performances of various indicators of social connectivity  



A recent study by Smieszek and Salathé, published in BMC Medicine [11], used high-

resolution contact-network data collected by wireless sensing devices during a 1-day period 

at a high school in the USA, combined with extensive epidemic simulations, to evaluate the 

effectiveness of several metrics to identify individuals who play a significant role in outbreak 

dissemination. The consolidated network dataset was limited to close proximity interactions, 

based on records indicating face-to-face contacts within a distance of less than 3 m at a 

certain point in time. The dataset also included location records indicating the presence of an 

individual in a specific classroom.  

The authors then quantified the performances of a variety of indicators of social 

connectivity, which required different levels of information on the high-school contact 

network to identify individuals with high transmission potential. In particular, the authors 

introduced a low-cost indicator of social connectivity, based on the ‘collocation-ranking 

method’, which relies on the cumulative amount of time that an individual spends with other 

individuals in the same room, modulated by class size. Such information does not rely on the 

detailed structure of the high-school contact network, and can be retrieved from schedule data 

alone. The Smieszek and Salathé study relied on simulations of influenza transmission on the 

detailed high-school contact network to assess the performances of the different indicators, in 

terms of their ability to identify individuals at higher risk of infection and those with early 

disease onset. 

Findings and potential applications 

Epidemic simulations showed that the simple schedule-based collocation ranking indicator 

clearly outperformed methods selecting individuals at random, and compared favorably with 

more data-hungry indicators. Because collecting reliable data about individual-level 

interactions is cumbersome and expensive to obtain at the community level, the authors 



proposed that their low-cost collocation method can be exploited for the design of sentinel 

surveillance systems, with the potential to quickly detect the onset of an infectious disease 

outbreak, and thereby optimize mitigation and prevention strategies. In particular, sentinel 

high-school students could be selected from those with high collocation ranking, and these 

could then be monitored for their infection status throughout the influenza season, and/or be 

prioritized for vaccination in the case of vaccine shortage, in an effort to stamp out an 

emerging outbreak. 

Limitations and future directions 

This interesting proof-of-concept study by Smieszek and Salathé addressed social interactions 

within a high school, which is an important focus for seasonal and pandemic influenza 

transmission [12]. As acknowledged by the authors, a key limitation of this study is the lack 

of validation against epidemiological data from real school outbreaks. The simulation model 

used to evaluate the performances of the method is a conceptualized version of disease 

transmission, and although it is driven by real contact information, it remains one step 

removed from the actual disease-transmission process. A previous study combining outbreak 

data in an elementary school with contact-network information highlighted the importance of 

gender on influenza transmission, with children of the same gender infecting each other more 

frequently (reflecting assortative mixing) [4], an issue that was not considered by Smieszek 

and Salathé. Interestingly, school outbreak data have also shown that the exact location of 

children within the classroom does not matter, which supports the use of simple class-

schedule information as proposed by Smieszek and Salathé [11] rather than the use of more 

detailed seating charts. Although there has been good progress overall in elucidating social 

interactions among school-age children, more studies are needed to address whether contact 

patterns, and hence transmission links, might differ between elementary and high schools.  



Another limitation of the school-based study by Smieszek and Salathé [11] relates to 

the contribution of other units to disease transmission. About one-third of all influenza 

secondary-transmission events are believed to occur within households [13], whereas only 7 

to 20% are thought to occur in schools [14]. Hence, estimating the relative infection risk of 

individuals in a variety of settings relevant for disease transmission, including schools, 

households, conferences, and transportation systems, will be important in future research. It is 

not clear how the method proposed by Smieszek and Salathé [11] could be generalized to 

household and work environments, where systematic ‘schedules’ are more difficult to obtain. 

As noted by the authors, the transmission mode of influenza and other respiratory 

pathogens is not clearly understood, but probably involves a combination of direct contact 

and transmission by fomites and aerosols, which makes it difficult to capture the social 

network relevant for disease transmission. Because the transmissibility of influenza has been 

shown to be associated with environmental conditions [15, 16], actual transmission rates 

could vary within the same school, house, or office building, owing to local differences in the 

environment. In the future, more elaborate studies should collect local environmental 

variables such as room ventilation rates to better quantify influenza transmission potential in 

confined settings [17].  

In summary, Smieszek and Salathé [11] have introduced a promising and practical 

method to identify individuals with high infection potential who can be targeted for outbreak 

detection and control. Future studies should employ consistent methodological approaches to 

measure contact networks in different settings, in parallel with careful disease monitoring. 

Technological advances in contact-network sensing devices and pathogen identification 

methods (for example, multiplex PCR), combined with innovative approaches for disease 

surveillance (for example, web-based and smart-phone technologies [18]), have huge 



potential to increase our understanding of infectious disease transmission and to suggest 

novel ways of detecting and controlling outbreaks.  
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